153 research outputs found

    Analysis of biostructural changes, dynamics, and interactions - Small-angle X-ray scattering to the rescue

    Get PDF
    AbstractSolution small angle X-ray scattering from biological macromolecules (BioSAXS) plays an increasingly important role in biostructural research. The analysis of complex protein mixtures, dynamic equilibriums, intrinsic disorder and evolving structural processes is facilitated by SAXS data, either in stand-alone applications, or with SAXS taking a prominent role in hybrid biostructural analysis. This is not the least due to the significant advances in both hardware and software that have taken place in particular at the large-scale facilities. Here, recent developments and the future potential of BioSAXS are reviewed, exemplified by numerous examples of elegant applications to challenging systems

    Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons

    Get PDF
    Journal ArticleABSTRACT: Background: While all codons that specify amino acids are universally recognized by tRNA molecules, codons signaling termination of translation are recognized by proteins known as class-I release factors (RF). In most eukaryotes and archaea a single RF accomplishes termination at all three stop codons. In most bacteria, there are two RFs with overlapping specificity, RF1 recognizes UA(A/G) and RF2 recognizes U(A/G)A. The hypothesis: First, we hypothesize that orthologues of the E. coli K12 pseudogene prfH encode a third class-I RF that we designate RFH. Second, it is likely that RFH responds to signals other than conventional stop codons. Supporting evidence comes from the following facts: (i) A number of bacterial genomes contain prfH orthologues with no discernable interruptions in their ORFs. (ii) RFH shares strong sequence similarity with other class-I bacterial RFs. (iii) RFH contains a highly conserved GGQ motif associated with peptidyl hydrolysis activity (iv) residues located in the areas supposedly interacting with mRNA and the ribosomal decoding center are highly conserved in RFH, but different from other RFs. RFH lacks the functional, but non-essential domain 1. Yet, RFH-encoding genes are invariably accompanied by a highly conserved gene of unknown function, which is absent in genomes that lack a gene for RFH. The accompanying gene is always located upstream of the RFH gene and with the same orientation. The proximity of the 3' end of the former with the 5' end of the RFH gene makes it likely that their expression is co-regulated via translational coupling. In summary, RFH has the characteristics expected for a class-I RF, but likely with different specificity than RF1 and RF2. Testing the hypothesis: The most puzzling question is which signals RFH recognizes to trigger its release function. Genetic swapping of RFH mRNA recognition components with its RF1 or RF2 counterparts may reveal the nature of RFH signals. Implications of the hypothesis: The hypothesis implies a greater versatility of release-factor like activity in the ribosomal Asite than previously appreciated. A closer study of RFH may provide insight into the evolution of the genetic code and of the translational machinery responsible for termination of translation

    Early Stage Alpha-Synuclein Amyloid Fibrils are Reservoirs of Membrane-Binding Species

    Get PDF
    Abstract The presence of αSN fibrils indisputably associates with the development of synucleinopathies. However, while certain fibril morphologies have been linked to downstream pathological phenotypes, others appear less harmful, leading to the concept of fibril strains, originally described in relation to prion disease. Indeed, the presence of fibrils does not associate directly with neurotoxicity. Rather, it has been suggested that the toxic compounds are soluble amyloidogenic oligomers, potentially co-existing with fibrils. Here, combining synchrotron radiation circular dichroism, transmission electron microscopy and binding assays on native plasma membrane sheets, we reveal distinct biological and biophysical differences between initial and matured fibrils, transformed within the timespan of few days. Immature fibrils are reservoirs of membrane-binding species, which in response to even gentle experimental changes release into solution in a reversible manner. In contrast, mature fibrils, albeit macroscopically indistinguishable from their less mature counterparts, are structurally robust, shielding the solution from the membrane active soluble species. We thus show that particular biological activity resides transiently with the fibrillating sample, distinct for one, but not the other, spontaneously formed fibril polymorph. These results shed new light on the principles of fibril polymorphism with consequent impact on future design of assays and therapeutic development

    In situ microfluidic dialysis for biological small-angle X-ray scattering

    Get PDF
    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample aggregation was induced by the concentration process at the levels achieved in these experiments. Simulations of fluid dynamics and transport properties within the device strongly suggest that aggregates, and possibly even higher-order oligomers, are preferentially retained by the device, resulting in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions

    Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons

    Get PDF
    BACKGROUND: While all codons that specify amino acids are universally recognized by tRNA molecules, codons signaling termination of translation are recognized by proteins known as class-I release factors (RF). In most eukaryotes and archaea a single RF accomplishes termination at all three stop codons. In most bacteria, there are two RFs with overlapping specificity, RF1 recognizes UA(A/G) and RF2 recognizes U(A/G)A. THE HYPOTHESIS: First, we hypothesize that orthologues of the E. coli K12 pseudogene prfH encode a third class-I RF that we designate RFH. Second, it is likely that RFH responds to signals other than conventional stop codons. Supporting evidence comes from the following facts: (i) A number of bacterial genomes contain prfH orthologues with no discernable interruptions in their ORFs. (ii) RFH shares strong sequence similarity with other class-I bacterial RFs. (iii) RFH contains a highly conserved GGQ motif associated with peptidyl hydrolysis activity (iv) residues located in the areas supposedly interacting with mRNA and the ribosomal decoding center are highly conserved in RFH, but different from other RFs. RFH lacks the functional, but non-essential domain 1. Yet, RFH-encoding genes are invariably accompanied by a highly conserved gene of unknown function, which is absent in genomes that lack a gene for RFH. The accompanying gene is always located upstream of the RFH gene and with the same orientation. The proximity of the 3' end of the former with the 5' end of the RFH gene makes it likely that their expression is co-regulated via translational coupling. In summary, RFH has the characteristics expected for a class-I RF, but likely with different specificity than RF1 and RF2. TESTING THE HYPOTHESIS: The most puzzling question is which signals RFH recognizes to trigger its release function. Genetic swapping of RFH mRNA recognition components with its RF1 or RF2 counterparts may reveal the nature of RFH signals. IMPLICATIONS OF THE HYPOTHESIS: The hypothesis implies a greater versatility of release-factor like activity in the ribosomal A-site than previously appreciated. A closer study of RFH may provide insight into the evolution of the genetic code and of the translational machinery responsible for termination of translation. REVIEWERS: This article was reviewed by Daniel Wilson (nominated by Eugene Koonin), Warren Tate (nominated by Eugene Koonin), Yoshikazu Nakamura (nominated by Eugene Koonin) and Eugene Koonin
    corecore