116 research outputs found

    Folate Deficiency, Hyperhomocysteinemia, Low Urinary Creatinine, and Hypomethylation of Leukocyte DNA Are Risk Factors for Arsenic-Induced Skin Lesions

    Get PDF
    Background Arsenic methylation relies on folate-dependent one-carbon metabolism and facilitates urinary As elimination. Clinical manifestations of As toxicity vary considerably among individuals and populations, and poor methylation capacity is thought to confer greater susceptibility. Objective After determining that folate deficiency, hyperhomocysteinemia, and low urinary creatinine are associated with reduced As methylation, and that As exposure is associated with increased genomic methylation of leukocyte DNA, we asked whether these factors are associated with As-induced skin lesion risk among Bangladeshi adults. Methods We conducted a nested case–control study of 274 cases who developed lesions 2 years after recruitment, and 274 controls matched to cases for sex, age, and water As. Results The odds ratios and 95% confidence intervals (CIs) for development of skin lesions for participants who had low folate (\u3c 9 nmol/L), hyperhomocysteinemia (men, \u3e 11.4 μmol/L; women, \u3e 10.4 μmol/L), or hypomethylated leukocyte DNA at recruitment (\u3c median) were 1.8 (95% CI, 1.1–2.9), 1.7 (95% CI, 1.1–2.6), and 1.8 (95% CI, 1.2–2.8), respectively. Compared with the subjects in the first quartile, those in the third and fourth quartiles for urinary creatinine had a 0.4-fold decrease in the odds of skin lesions (p \u3c 0.01). Conclusions These results suggest that folate deficiency, hyperhomocysteinemia, and low urinary creatinine, each associated with decreased As methylation, are risk factors for As-induced skin lesions. The increased DNA methylation associated with As exposure previously observed, and confirmed among controls in this study, may be an adaptive change because hypomethylation of leukocyte DNA is associated with increased risk for skin lesions

    A Cross-sectional Study of the Impact of Blood Selenium on Blood and Urinary Arsenic Concentrations in Bangladesh

    Get PDF
    Background: Arsenic can naturally occur in the groundwater without an anthropogenic source of contamination. In Bangladesh over 50 million people are exposed to naturally occurring arsenic concentrations exceeding the World Health Organization’s guideline of 10 μg/L. Selenium and arsenic have been shown to facilitate the excretion of each other in bile. Recent evidence suggests that selenium may play a role in arsenic elimination by forming a selenium-arsenic conjugate in the liver before excretion into the bile. Methods: A cross-sectional study of 1601 adults and 287 children was conducted to assess the relationship between blood selenium and urinary and blood arsenic in a study population residing in a moderately arsenic-contaminated rural area in Bangladesh. Results: The results of this study indicate a statistically significant inverse relationship between blood selenium and urinary arsenic concentrations in both adult and pediatric populations in rural Bangladesh after adjustment for age, sex, Body Mass Index, plasma folate and B12 (in children), and ever smoking and current betel nut use (in adults). In addition, there appears to be a statistically significant inverse relationship between blood selenium and blood arsenic in children. Conclusions: Our results suggest that selenium is inversely associated with biomarkers of arsenic burden in both adults and children. These findings support the hypothesis that Se facilitates the biliary elimination of As, possibly via the putative formation of a Se-As conjugate using a glutathione complex. However, laboratory based studies are needed to provide further evidence to elucidate the presence of Se-As conjugate and its role in arsenic elimination in humans

    Folate, Homocysteine, and Arsenic Metabolism in Arsenic-Exposed Individuals in Bangladesh

    Get PDF
    Chronic exposure to arsenic is occurring throughout South and East Asia due to groundwater contamination of well water. Variability in susceptibility to arsenic toxicity may be related to nutritional status. Arsenic is methylated to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) via one-carbon metabolism, a biochemical pathway that is dependent on folate. The majority of one-carbon metabolism methylation reactions are devoted to biosynthesis of creatine, the precursor of creatinine. Our objectives of this cross-sectional study were to characterize the relationships among folate, cobalamin, homocysteine, and arsenic metabolism in Bangladeshi adults. Water arsenic, urinary arsenic, urinary creatinine, plasma folate, cobalamin, and homocysteine were assessed in 1,650 adults; urinary arsenic metabolites were analyzed for a subset of 300 individuals. The percentage of DMA in urine was positively associated with plasma folate (r = 0.14, p = 0.02) and negatively associated with total homocysteine (tHcys; r = −0.14, p = 0.01). Conversely, percent MMA was negatively associated with folate (r = −0.12, p = 0.04) and positively associated with tHcys (r = 0.21, p = 0.0002); percent inorganic arsenic (InAs) was negatively associated with folate (r = −0.12, p = 0.03). Urinary creatinine was positively correlated with percent DMA (r = 0.40 for males, p < 0.0001; 0.25 for females, p = 0.001), and with percent InAs (r = −0.45 for males, p < 0.0001; −0.20 for females, p = 0.01). Collectively, these data suggest that folate, tHcys, and other factors involved in one-carbon metabolism influence arsenic methylation. This may be particularly relevant in Bangladesh, where the prevalence of hyperhomocysteinemia is extremely high

    A Prospective Study of Arsenic Exposure, Arsenic Methylation Capacity, and Risk of Cardiovascular Disease in Bangladesh

    Get PDF
    Millions of persons worldwide, including 13 million Americans (U.S. Environmental Protection Agency 2009) and over 50 million in Bangladesh (British Geological Survey 2007), have been chronically exposed to arsenic, a group 1 human carcinogen (International Agency for Research on Cancer 2004), through contaminated drinking water. Arsenic exposure from drinking water has been associated with cardiovascular disease (CVD) (Chen CJ et al. 1996; Chen Y et al. 2011; Chiou et al. 1997; Liao et al. 2012; Tseng et al. 2003; Yuan et al. 2007). However, prospective studies assessing susceptibility to CVD due to arsenic exposure are rare. Arsenic in drinking water is present as inorganic arsenic (iAS). Once ingested, iAs is methylated to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The relative distribution of urinary arsenic metabolites varies from person to person and has been interpreted to reflect arsenic methylation capacity (Hopenhayn-Rich et al. 1996; Vahter 1999). Mechanistic studies have shown that MMAIII is more toxic than iAs or any of the pentavalent metabolites (Petrick et al. 2000; Styblo et al. 2000). Incomplete methylation, indicated by a high percentage of urinary MMA (MMA%), has been consistently related to cancers (Chen YC et al. 2003; Pu et al. 2007; Steinmaus et al. 2006; Yu et al. 2000), and there is some evidence of stronger associations among smokers than nonsmokers (Pu et al. 2007; Steinmaus et al. 2006). However, the association between urinary MMA% and CVD risk is unknown, and research on the combined effects of arsenic and biomarkers of arsenic susceptibility on CVD risk is needed. We conducted a prospective case–cohort study nested in a large prospective cohort to assess associations of arsenic exposure from drinking water and arsenic methylation capacity, indicated using relative distribution of urinary arsenic metabolites, with CVD risk

    Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study

    Get PDF
    Objective To evaluate the association between arsenic exposure and mortality from cardiovascular disease and to assess whether cigarette smoking influences the association

    Associations of Plasma Selenium with Arsenic and Genomic Methylation of Leukocyte DNA in Bangladesh

    Get PDF
    Background Global hypomethylation of DNA is thought to constitute an early event in some cancers and occurs in response to arsenic (As) exposure and/or selenium (Se) deficiency in both in vitro and animal models. In addition, antagonism between As and Se, whereby each reduces toxicity of the other, has been well documented in animal models. Se status may therefore modify the health effects of As in As-exposed populations. Objective The primary objectives of our study were to test the hypothesis that Se deficiency is associated with genomic hypomethylation of lymphocyte DNA and to determine whether Se levels are associated with blood As (bAs) and urinary As (uAs) concentrations in adults exposed to As-contaminated groundwater in Bangladesh. A secondary objective was to explore the relationships between plasma Se and As metabolites. Design We assessed plasma Se concentrations, As metabolite profiles in blood and urine, and genomic methylation of leukocyte DNA in a cross-sectional study of 287 adults. Results After adjustment for potential confounders, we observed an inverse association between Se (micrograms per liter) and genomic DNA methylation (disintegrations per minute per 1-μg/L increase in Se): β = 345.6; 95% confidence interval (CI), 59–632. Se concentrations were inversely associated with total As concentrations (micrograms per liter) in blood (β = −0.04; 95% CI, −0.08 to −0.01) and urine (β = −20.1; 95% CI, −29.3 to −10.9). Se levels were negatively associated with the percentage of monomethylarsinic acid (β = −0.59; 95% CI, −1.04 to −0.13) and positively associated with the percentage of dimethylarsinic acid (β = 0.53; 95% CI, 0.04 to 1.01) in blood. Conclusions Our results suggest that Se is inversely associated with genomic DNA methylation. The underlying mechanisms and implications of this observation are unclear and warrant further investigation. In addition, Se may influence bAs and uAs concentrations, as well as relative proportions of As metabolites in blood

    Water Manganese Exposure and Children’s Intellectual Function in Araihazar, Bangladesh

    Get PDF
    Exposure to manganese via inhalation has long been known to elicit neurotoxicity in adults, but little is known about possible consequences of exposure via drinking water. In this study, we report results of a cross-sectional investigation of intellectual function in 142 10-year-old children in Araihazar, Bangladesh, who had been consuming tube-well water with an average concentration of 793 μg Mn/L and 3 μg arsenic/L. Children and mothers came to our field clinic, where children received a medical examination in which weight, height, and head circumference were measured. Children’s intellectual function was assessed on tests drawn from the Wechsler Intelligence Scale for Children, version III, by summing weighted items across domains to create Verbal, Performance, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and creatinine and were asked to provide blood samples for measuring blood lead, As, Mn, and hemoglobin concentrations. After adjustment for sociodemographic covariates, water Mn was associated with reduced Full-Scale, Performance, and Verbal raw scores, in a dose–response fashion; the low level of As in water had no effect. In the United States, roughly 6% of domestic household wells have Mn concentrations that exceed 300 μg Mn/L, the current U.S. Environmental Protection Agency lifetime health advisory level. We conclude that in both Bangladesh and the United States, some children are at risk for Mn-induced neurotoxicity
    corecore