4 research outputs found
A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus
Type 2 diabetes mellitus (T2DM) is commonly associated with hyperglycemia, dyslipidemia, oxidative stress and inflammation which are well known cardiovascular risk factors. Pomegranate peel polyphenols have a proven hypolipemic, antioxidant and anti-inflammatory activity. However, there is a lack of clinical studies that would confirm its antioxidant and anti-inflammatory effects in diabetic patients. The potential of pomegranate peel extract (PoPEx) to counteract inflammation and oxidative stress in T2DM patients was investigated. For this purpose, a randomized, double-blind placebo-controlled study involving adult T2DM patients treated with PoPEx or placebo for eight-weeks was conducted. Methods: Patients were randomly divided into two groups: the first group (n = 30) received capsules containing PoPEx 250 mg twice daily, while the placebo group (n = 30) received placebo capsules twice daily. Plasma concentration of inflammatory factors (interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and high sensitivity C reactive protein (hsCRP)), oxidative stress biomarkers (thiobarbituric acid reactive substances (TBARS), nitrites (NO2−), superoxide anion radical (O2−), hydrogen peroxide (H2O2), total antioxidant capacity (TAC)), homocysteine and lipid profile were analyzed. Results: The PoPEx treatment showed a significant reduction of inflammatory factors (IL-6, TNF-α, hsCRP), oxidative stress biomarkers (TBARS, NO2−, O2−) and homocysteine, while the TAC was increased. Moreover, a significant improvement in lipid profile was observed in the PoPEx group. Additional analysis showed a significant inverse correlation between the decrements of all measured inflammatory markers and TAC in the PoPEx group. Conclusions: The study demonstrated that eight-week-long PoPEx administration had favorable effects on inflammatory status and oxidative stress biomarkers in diabetic patients
Author Correction: Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance (Nature Communications, (2022), 13, 1, (7251), 10.1038/s41467-022-34312-7)
In this article, the author name Antoinette Ngandjio was incorrectly written as Antoinette Ngandijo. In this article, the affiliation details for Author Sara Cuadros-Orellana were incorrectly given as ‘Centro de Biotecnologνa de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Talca, Chile’ but should have been ‘Universidad Catolica del Maule, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Talca, Chile’. The original article has been corrected
Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance
Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention