326 research outputs found
Nonlinear properties of left-handed metamaterials
We analyze nonlinear properties of microstructured materials with negative
refraction, the so-called left-handed metamaterials. We consider a
two-dimensional periodic structure created by arrays of wires and split-ring
resonators embedded into a nonlinear dielectric, and calculate the effective
nonlinear electric permittivity and magnetic permeability. We demonstrate that
the hysteresis-type dependence of the magnetic permeability on the field
intensity allows changing the material from left- to right-handed and back.
These effects can be treated as the second-order phase transitions in the
transmission properties induced by the variation of an external field.Comment: 4 pages, 3 figure
Enhanced parametric processes in binary metamaterials
We suggest double-resonant (binary) metamaterials composed of two types of
magnetic resonant elements, and demonstrate that in the nonlinear regime such
metamaterials provide unique possibilities for phase-matched parametric
interaction and enhanced second-harmonic generation
Refraction at Media with Negative Refractive Index
We show that an electromagnetic (EM) wave undergoes negative refraction at
the interface between a positive and negative refractive index material. Finite
difference time domain (FDTD) simulations are used to study the time evolution
of an EM wave as it hits the interface. The wave is trapped temporarily at the
interface and after a long time, the wave front moves eventually in the
negative direction. This explains why causality and speed of light are not
violated in spite of the negative refraction always present in a negative index
material.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
Second-harmonic generation in nonlinear left-handed metamaterials
We study the second-harmonic generation in left-handed metamaterials with a
quadratic nonlinear response. We demonstrate a novel type of the exact phase
matching between the backward propagating wave of the fundamental frequency and
the forward propagating wave of the second harmonics. We show that this novel
parametric process can convert a surface of the left-handed metamaterial into
an effective mirror totally reflecting the second harmonics generated by an
incident wave. We derive and analyze theoretically the coupled-mode equations
for a semi-infinite nonlinear metamaterial. We also study numerically the
second-harmonic generation by a metamaterial slab of a finite thickness, and
reveal the existence of multistable nonlinear effects.Comment: 6 pages, 6 figure
Near Field Lenses in Two Dimensions
It has been shown that a slab of materials with refractive index = -1 behaves
like a perfect lens focussing all light to an exact electromagnetic copy of an
object. The original lens is limited to producing images the same size as the
object, but here we generalise the concept so that images can be magnified. For
two dimensional systems, over distances much shorter than the free space
wavelength, we apply conformal transformations to the original parallel sided
slab generating a variety of new lenses. Although the new lenses are not
`perfect' they are able to magnify two dimensional objects. The results apply
equally to imaging of electric or magnetic sub wavelength objects in two
dimensions. The concepts have potential applications ranging from microwave
frequencies to the visible.Comment: PDF fil
Reverse Doppler effect in backward spin waves scattered on acoustic waves
We report on the observation of reverse Doppler effect in backward spin waves
reflected off of surface acoustic waves. The spin waves are excited in a
yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also
generated. The strain induced by the acoustic waves in the magnetostrictive YIG
film results in the periodic modulation of the magnetic anisotropy in the film.
Thus, in effect, a travelling Bragg grating for the spin waves is produced. The
backward spin waves reflecting off of this grating exhibit a reverse Doppler
shift: shifting down rather than up in frequency when reflecting off of an
approaching acoustic wave. Similarly, the spin waves are shifted up in
frequency when reflecting from receding acoustic waves.Comment: 4 pages, 3 figure
The negative index of refraction demystified
We study electromagnetic wave propagation in mediums in which the effective
relative permittivity and the effective relative permeability are allowed to
take any value in the upper half of the complex plane. A general condition is
derived for the phase velocity to be oppositely directed to the power flow.
That extends the recently studied case of propagation in mediums for which the
relative permittivity and relative permeability are both simultaneously
negative, to include dissipation as well. An illustrative case study
demonstrates that in general the spectrum divides into five distinct regions.Comment: 5 pages, 4 figure
Nonlinear magnetoinductive waves and domain walls in composite metamaterials
We describe novel physics of nonlinear magnetoinductive waves in left-handed
composite metamaterials. We derive the coupled equations for describing the
propagation of magnetoinductive waves, and show that in the nonlinear regime
the magnetic response of a metamaterial may become bistable. We analyze
modulational instability of different nonlinear states, and also demonstrate
that nonlinear metamaterials may support the propagation of domain walls
(kinks) connecting the regions with the positive and negative magnetization.Comment: 5 pages, 5 figure
Negative Refraction and Left-handed electromagnetism in Microwave Photonic Crystals
We demonstrate negative refraction of microwaves in metallic photonic
crystals. The spectral response of the photonic crystal, which manifests both
positive and negative refraction, is in complete agreement with band-structure
calculations and numerical simulations. The negative refraction observed
corresponds to left-handed electromagnetism and arises due to the dispersion
characteristics of waves in a periodic medium. This mechanism for negative
refraction is different from that in metamaterials.Comment: 13 pages, 4 figure
Novel approach to a perfect lens
Within the framework of an exact analytical solution of Maxwell equations in
a space domain, it is shown that optical scheme based on a slab with negative
refractive index () (Veselago lens or Pendry lens) does not possess
focusing properties in the usual sense . In fact, the energy in such systems
does not go from object to its "image", but from object and its "image" to an
intersection point inside a metamaterial layer, or vice versa. A possibility of
applying this phenomenon to a creation of entangled states of two atoms is
discussed.Comment: 4 pages, 6 figure
- …