3 research outputs found

    Spin relaxation of conduction electrons in polyvalent metals: A realistic calculation

    Full text link
    Relaxation of electronic spins in metals is significantly enhanced whenever a Fermi surface crosses Brillouin zone boundaries, special symmetry points, or lines of accidental degeneracy. A realistic calculation shows that if aluminum had one valence electron, its spin relaxation would be slower by nearly two orders of magnitude. This not only solves a longstanding experimental puzzle, but also provides a way of tailoring spin dynamics of electrons in a conduction band.Comment: 12 pages, 3 figures; to appear in PR

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore