168 research outputs found

    Evaluation of a combination of alfaxalone and methadone, with or without midazolam, for premedication in healthy dogs

    Get PDF
    Introduction: The study objective was to evaluate sedative and physiologic effects of midazolam associated with a combination of methadone and alfaxalone for IM premedication in dogs. Methods: Sixteen healthy dogs of various breeds, weighing 5–12 kg, classified ASA status I-II, randomly received a combination of 0.5 mg kg−1 of methadone and 1 mg kg−1 of alfaxalone with (MMA) or without (MA) 0.5 mg kg−1 of midazolam by IM injection. Quality of sedation was assessed at 10, 15, 20 and 25 minutes post-injection, by an observer blinded to treatment. Cardiovascular, respiratory variables and additional intravenous alfaxalone required for endotracheal intubation were recorded. Data were analyzed with mixed-effect linear model on rank or Mann-Whitney rank-sum test (p≤0.05). Results: There was no significant difference over time in heart rate, respiratory rate, systolic blood pressure, SpO2 and temperature between MA and MMA premedication. Sedation increased over time (p < 0.01), however dogs premedicated with MMA appeared significantly less sedated than dogs premedicated with MA at 15 (p=0.02), 20 (p=0.02) and 25 minutes (p=0.01) post-injection. This was substantiated by the fact that dogs premedicated with MMA were almost four times more likely to show delirium than those premedicated with MA (OR 3.95, CI 0.69-7.21, p=0.02). The amount of alfaxalone needed for intubation did not differ between treatments (p=0.92). Conclusion: Results suggest that adding midazolam to an IM combination of methadone and alfaxalone does not improve sedation scores or amount of agent needed for intubation in healthy dogs

    Serum IgG antibodies from pregnant women reacting to mimotopes of simian virus 40 large T antigen, the viral oncoprotein

    Get PDF
    Simian virus 40 (SV40) large T antigen (LT) coding sequences were revealed in different human samples, whereas SV40 antibodies (Ab) were detected in human sera of cancer patients and healthy individuals, although with a lower prevalence. Previous studies carried out by the neutralization assay gave a SV40 seroprevalence, in the general population, up to 8%, although higher rates, 12%, were detected in kidney transplant children, in a group of HIV-positive patients, and in healthy females. In this study, serum samples from pregnant women, together with those from non-pregnant women, were analyzed to check the prevalence of IgG Ab reacting to SV40 LT antigens. Serum samples were collected from pregnant and non-pregnant women, with the same mean age. Women were in the range of 15-48 years old. Samples were assayed by an indirect ELISA employing specific SV40 LT mimotopes as antigens, whereas functional analysis was performed by neutralization of the viral infectivity in cell cultures. As a control, sera were analyzed for Ab against BK polyomavirus (BKPyV), which is a human polyomavirus homologous to SV40. Statistical analyses employed chi-square with Yates' correction, and Student's t tests. Indirect ELISAs indicated that pregnant women tested SV40 LT-positive with a prevalence of 17% (23/134), whereas non-pregnant women had a prevalence of 20% (36/180) (P > 0.05). Ab against BKPyV were detected with a prevalence of 80% in pregnant women and with a prevalence of 78% in non-pregnant women. These data indicate that SV40 infects at a low prevalence pregnant women. We may speculate that SV40, or a close human polyomavirus still undetected, could be transmitted from mother to fetus

    Effect of high-frequency electromagnetic fields on trophoblastic connexins.

    Get PDF
    Connexins (Cx) are membrane proteins able to influence trophoblast functions. Here we investigated the effect of high-frequency electromagnetic fields (HF-EMF) on Cx expression and localization in extravillous trophoblast cell line HTR-8/SVneo. We also analysed cell ultrastructural changes induced by HF-EMF exposure. Samples were exposed to pulse-modulated 1817 MHz sinusoidal waves (GSM-217 Hz; 1 h: SAR of 2 W/kg). Cx mRNA expression was assessed through semi-quantitative RT-PCR, protein expression by Western blotting, protein localization by indirect immunoflorescence, cell ultrastructure using electron microscopy. HF-EMF exposure significantly and selectively increased Cx40 and Cx43, without altering protein expression. Nevertheless, Cx40 and Cx43 lost their punctuate fluorescence within the cell membrane, becoming diffuse after HF-EMF exposure. Electron microscopy evidenced a sharp decrease in intercellular gap junction-like structures. This study is the first to indicate that exposure of extravillous trophoblast to GSM-217 Hz signals can modify Cx gene expression, Cx protein localization and cellular ultrastructure

    Assessing mitochondrial dysfunction in cells

    Get PDF
    Assessing mitochondrial dysfunction requires definition of the dysfunction to be investigated. Usually, it is the ability of the mitochondria to make ATP appropriately in response to energy demands. Where other functions are of interest, tailored solutions are required. Dysfunction can be assessed in isolated mitochondria, in cells or in vivo, with different balances between precise experimental control and physiological relevance. There are many methods to measure mitochondrial function and dysfunction in these systems. Generally, measurements of fluxes give more information about the ability to make ATP than do measurements of intermediates and potentials. For isolated mitochondria, the best assay is mitochondrial respiratory control: the increase in respiration rate in response to ADP. For intact cells, the best assay is the equivalent measurement of cell respiratory control, which reports the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory rate, the respiratory control ratio and the spare respiratory capacity. Measurements of membrane potential provide useful additional information. Measurement of both respiration and potential during appropriate titrations enables the identification of the primary sites of effectors and the distribution of control, allowing deeper quantitative analyses. Many other measurements in current use can be more problematic, as discussed in the present review

    Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus

    Get PDF
    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus

    Effects of Transmitters and Amyloid-Beta Peptide on Calcium Signals in Rat Cortical Astrocytes: Fura-2AM Measurements and Stochastic Model Simulations

    Get PDF
    BACKGROUND: To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25-35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25-35. A25-35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25-35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements. CONCLUSIONS/SIGNIFICANCE: Nanomolar A25-35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25-35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling further helps in understanding the mechanisms associated with intracellular calcium oscillations. Modeling the mechanisms is important, as astrocytes have an essential role in regulating the neuronal microenvironment of the central nervous system
    corecore