455 research outputs found

    Transmission Eigenvalues for a Class of Non-Compactly Supported Potentials

    Full text link
    Let ΩRn\Omega\subseteq\mathbb R^n be a non-empty open set for which the Sobolev embedding H02(Ω)L2(Ω)H_0^2(\Omega)\longrightarrow L^2(\Omega) is compact, and let VL(Ω)V\in L^\infty(\Omega) be a potential taking only positive real values and satisfying the asymptotics V()αV(\cdot)\asymp\left\langle\cdot\right\rangle^{-\alpha} for some α]3,[\alpha\in\left]3,\infty\right[. We establish the discreteness of the set of real transmission eigenvalues for both Schr\"odinger and Helmholtz scattering with these potentials

    Moments and oscillations of exponential sums related to cusp forms

    Full text link
    We consider large values of long linear exponential sums involving Fourier coefficients of holomorphic cusp forms. The sums we consider involve rational linear twists e(nh/k)e(nh/k) with sufficiently small denominators. We prove both pointwise upper bounds and bounds for the frequency of large values. In particular, the kk-aspect is treated. As an application we obtain upper bounds for all the moments of the sums in question. We also give the asymptotics with the right main term for fourth moments. We also consider the mean square of very short sums, proving that on average short linear sums with rational additive twists exhibit square root cancellation. This result is also proved in a slightly sharper form. Finally, the consideration of moment estimates for both long and short exponential sums culminates in a result concerning the oscillation of the long linear sums. Essentially, this result says that for a positive proportion of time, such a sum stays in fairly long intervals, where its order of magnitude does not drop below the average order of magnitude and where its argument is in a given interval of length 3π/2+ε3\pi/2+\varepsilon and so can not wind around the origin

    Exponential Sums Related to Maass Forms

    Full text link
    We estimate short exponential sums weighted by the Fourier coefficients of a Maass form. This requires working out a certain transformation formula for non-linear exponential sums, which is of independent interest. We also discuss how the results depend on the growth of the Fourier coefficients in question. As a byproduct of these considerations, we can slightly extend the range of validity of a short exponential sum estimate for holomorphic cusp forms. The short estimates allow us to reduce smoothing errors. In particular, we prove an analogue of an approximate functional equation previously proven for holomorphic cusp form coefficients. As an application of these, we remove the logarithm from the classical upper bound for long linear sums weighted by Fourier coefficients of Maass forms, the resulting estimate being the best possible. This also involves improving the upper bounds for long linear sums with rational additive twists, the gains again allowed by the estimates for the short sums. Finally, we shall use the approximate functional equation to bound somewhat longer short exponential sums.Comment: 58 p

    Shape identification in inverse medium scattering problems with a single far-field pattern

    Get PDF
    Consider time-harmonic acoustic scattering from a bounded penetrable obstacle DRND\subset \mathbb R^N embedded in a homogeneous background medium. The index of refraction characterizing the material inside DD is supposed to be H\"older continuous near the corners. If DR2D\subset \mathbb R^2 is a convex polygon, we prove that its shape and location can be uniquely determined by the far-field pattern incited by a single incident wave at a fixed frequency. In dimensions N3N \geq 3, the uniqueness applies to penetrable scatterers of rectangular type with additional assumptions on the smoothness of the contrast. Our arguments are motivated by recent studies on the absence of non-scattering wavenumbers in domains with corners. As a byproduct, we show that the smoothness conditions in previous corner scattering results are only required near the corners

    Verkko-opas diabeetikon jalkojen omahoitoon

    Get PDF
    Opinnäytetyön tarkoituksena oli tuottaa HUS:n Internet- ja Intranet sivuille verkko-opasmateriaali diabeetikoiden jalkojen omahoitotietouden edistämiseksi. Verkko-opas teh-tiin yhteistyössä HUS:n kahden jalkojenhoitajan kanssa, jotka kuuluivat opinnäytetyön kehittämisryhmään. Opinnäytetyön tutkimuksellinen lähestymistapa oli kvalitatiivinen eli laadullinen. Aineisto kerättiin kattavan kirjallisuuskatsauksen avulla. Kirjallisuuskatsaus tehtiin käyttäen tietokantoja PubMed, Medline Ovid ja Cinahl. Tietokannat valittiin niiden kattavuuden ja luotettavuuden perusteella. Aineistoa kerättiin myös kehittämisryhmän kanssa käytyjen teemakeskustelujen avulla, joita oli yhteensä neljä. Kaikki aineisto analysoitiin sisällön analyysin menetelmää käyttäen. Kirjallisuuskatsauksen mukaan keskeiset diabeetikon jalkojen omahoidon osa-alueet olivat jalkahygienia, jalkojen ihon hoito, jalkojen tarkastaminen, kynsien hoito, sukka, jalkine, kylmyyden ja kuumuuden aiheuttamat riskitekijät ja yhteydenotto jalkaterapeuttiin tai jalkojenhoitajaan. Näistä osa-alueista muodostettiin diabeetikon jalkojen omahoidon verkko-opas. Verkko-opas on tarkoitettu HUS:n diabeetikoiden parissa työtä tekevien ja diabeetikoiden käyttöön. Kehittämisryhmä oli tyytyväinen verkko-oppaan materiaaliin. Kehittämisehdotuksia tuli sanamuotojen ja lauserakenteiden johdonmukaisuuteen. Myös ohjeiden määrää karsittiin, jotta kokonaisuus pysyisi selkeänä. Verkko-oppaan omahoito-ohjeiden avulla voidaan ehkäistä diabeetikon jalkavaivojen kehittymistä. Työn tavoitteena oli saada HUS:n käyttöön yhteneväiset jalkojen omahoito-ohjeet diabeetikoiden jalkojen omahoidon ohjausta varten sekä diabeetikoiden jalkojen omahoitotietouden edistämiseksi. Tässä tavoitteessa on onnistuttu hyvin. Yhtenä kehittämismahdollisuutena voisi olla verkko-oppaan testaaminen käytännössä. Selvittämisen tavoitteena olisi esimerkiksi se, kuinka HUS:n työntekijät hyödyntävät verkko-opasta käytännössä tai kuinka sen vaikutus näkyy diabeetikoiden jalkojen omahoitotottumuksissa.The aim of this study was to produce an online guide for diabetic patient’s foot self-care for the web pages of Hospital District of Helsinki and Uusimaa. The study was carried out in co-operation with the hospital. The method used in this study was qualitative. The data was collected from a literature review. The literature was gathered from the following databases: PubMed, Medline Ovid and Cinahl. The databases were chosen because of their reliability and coverage. The data was also collected from four group discussions with a development group. All data were analyzed using content analysis method. The results show that the categories of diabetic patient´s foot self-care are: foot hygiene, foot inspecting, nail care, socks, footwear, risk factors caused by cold and heat and contacting a podiatrist. The online guide includes all of these categories. The online guide is meant for the employees in the Hospital District of Helsinki and Uusimaa and diabetic patients. The development group was satisfied with the online guide material. The group suggested that the wording and sentences could be clearer. The instructions were also shortened so that the online guide would be clearer to read. Diabetic foot problems can be prevented with this online guide. The aim of this study was to develop common practice for the guidance of diabetic’s foot self-care. This goal was achieved. The online guide could be tested in practice to gather information about how the employees use the guide and if it has an effect on the patients’ self-care routines
    corecore