156 research outputs found

    Image effects in transport at metal-molecule interfaces

    Full text link
    We present a method for incorporating image-charge effects into the description of charge transport through molecular devices. A simple model allows us to calculate the adjustment of the transport levels, due to the polarization of the electrodes as charge is added to and removed from the molecule. For this, we use the charge distributions of the molecule between two metal electrodes in several charge states, rather than in gas phase, as obtained from a density-functional theory-based transport code. This enables us to efficiently model level shifts and gap renormalization caused by image-charge effects, which are essential for understanding molecular transport experiments. We apply the method to benzene di-amine molecules and compare our results with the standard approach based on gas phase charges. Finally, we give a detailed account of the application of our approach to porphyrin-derivative devices recently studied experimentally by Perrin et al. [Nat. Nanotechnol. 8, 282 (2013)], which demonstrates the importance of accounting for image-charge effects when modeling transport through molecular junctions

    Large tunable image-charge effects in single-molecule junctions

    Full text link
    The characteristics of molecular electronic devices are critically determined by metal-organic interfaces, which influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers (SAMs) show (molecule-dependent) level shifts as well as transport-gap renormalization, suggesting that polarization effects in the metal substrate play a key role in the level alignment with respect to the metal's Fermi energy. Here, we provide direct evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport in single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied levels can be followed in situ and with simultaneous mechanical control. When increasing the electrode separation, we observe a substantial increase in the transport gap with level shifts as high as several hundreds of meV for displacements of a few \aa ngstroms. Analysis of this large and tunable gap renormalization with image-charge calculations based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions

    First report of generalized face processing difficulties in möbius sequence.

    Get PDF
    Reverse simulation models of facial expression recognition suggest that we recognize the emotions of others by running implicit motor programmes responsible for the production of that expression. Previous work has tested this theory by examining facial expression recognition in participants with Möbius sequence, a condition characterized by congenital bilateral facial paralysis. However, a mixed pattern of findings has emerged, and it has not yet been tested whether these individuals can imagine facial expressions, a process also hypothesized to be underpinned by proprioceptive feedback from the face. We investigated this issue by examining expression recognition and imagery in six participants with Möbius sequence, and also carried out tests assessing facial identity and object recognition, as well as basic visual processing. While five of the six participants presented with expression recognition impairments, only one was impaired at the imagery of facial expressions. Further, five participants presented with other difficulties in the recognition of facial identity or objects, or in lower-level visual processing. We discuss the implications of our findings for the reverse simulation model, and suggest that facial identity recognition impairments may be more severe in the condition than has previously been noted

    Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles

    Get PDF
    Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level

    Identification of an alternative triglyceride biosynthesis pathway

    Get PDF
    Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies 1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2) 3. In other organisms, this activity is complemented by additional enzymes 4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1. </p

    Exploring Barriers and Opportunities in Adopting Crowdsourcing Based New Product Development in Manufacturing SMEs

    Get PDF
    Crowdsourcing is an innovative business practice of obtaining needed services, ideas, or content or even funds by soliciting contributions from a large group of people (the ‘Crowd’). The potential benefits of utilizing crowdsourcing in product design are well-documented, but little research exists on what are the barriers and opportunities in adopting crowdsourcing in new product development (NPD) of manufacturing SMEs. In order to answer the above questions, a Proof of Market study is carried out on crowdsourcing-based product design under an Innovate UK funded Smart project, which aims at identifying the needs, challenges and future development opportunities associated with adopting crowdsourcing strategies for NPD. The research findings from this study are reported here and can be used to guide future development of crowdsourcing-based collaborative design methods and tools and provide some practical references for industry to adopt this new and emerging collaborative design method in their business

    Increased concentration of two different advanced glycation end-products detected by enzyme immunoassays with new monoclonal antibodies in sera of patients with rheumatoid arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Levels of pentosidine (representative of advanced glycation end-products) in sera of patients with rheumatoid arthritis are increased when compared with sera of other diagnoses or healthy controls. These levels have been reported to correlate with clinical indices of rheumatoid arthritis activity and with laboratory markers of inflammation. The purpose of this study was to find out if these findings pertain to other advanced glycation end-products.</p> <p>Methods</p> <p>We have developed two immunoassays based on new monoclonal antibodies to advanced glycation end-products. Antibody 103-E3 reacts with an unidentified antigen, formed in the reaction of proteins with ribose, while antibody 8-C1 responds to N<sup>ε</sup>-(carboxyethyl)lysine. We have used these monoclonal antibodies to measure levels of advanced glycation end-products in sera of patients with rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, and healthy controls. We calculated the correlations between advanced glycation end-product levels in rheumatoid arthritis sera and the Disease Activity Score 28 (DAS28), age, disease duration, CRP, anti-CCP, rheumatoid factor and treatment with corticosteroids, respectively.</p> <p>Results</p> <p>Levels of both glycation products were significantly higher in sera of patients with rheumatoid arthritis when compared with sera of patients with systemic lupus erythematosus, osteoarthritis, or the healthy controls. Neither the level of N<sup>ε</sup>-(carboxyethyl)lysine nor the level of the 103-E3 antigen in rheumatoid arthritis sera correlated with the DAS28-scored rheumatoid arthritis activity. The levels of both antigens in rheumatoid arthritis sera did not correlate with age, gender, corticosteroid treatment, or levels of CRP, anti-CCP antibodies, and rheumatoid factor in sera.</p> <p>Conclusions</p> <p>We report highly specific increases in the levels of two advanced glycation end-products in sera of patients with rheumatoid arthritis. This increase could be explained neither by rheumatoid arthritis activity nor by inflammation. We propose a working hypothesis that presumes the existence of a link between advanced glycation end-product formation and induction of autoimmunity.</p

    Ubiquitination of CXCR7 Controls Receptor Trafficking

    Get PDF
    The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gαi-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process
    corecore