33 research outputs found

    Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm

    Get PDF
    Background: Modulation of the commensal oral microbiota constitutes a promising preventive/therapeutic approach in oral healthcare. The use of prebiotics for maintaining/restoring the health-associated homeostasis of the oral microbiota has become an important research topic. Aims: This study hypothesised that in vitro 14-species oral biofilms can be modulated by (in)direct stimulation of beneficial/commensal bacteria with new potential prebiotic substrates tested at 1 M and 1%((w/v)), resulting in more host-compatible biofilms with fewer pathogens, decreased virulence and less inflammatory potential. Methods: Established biofilms were repeatedly rinsed with N-acetyl-D-glucosamine, alpha-D-lactose, D-(+)-trehalose or D-(+)-raffinose at 1 M or 1%((w/v)). Biofilm composition, metabolic profile, virulence and inflammatory potential were eventually determined. Results: Repeated rinsing caused a shift towards a more health-associated microbiological composition, an altered metabolic profile, often downregulated virulence gene expression and decreased the inflammatory potential on oral keratinocytes. At 1 M, the substrates had pronounced effects on all biofilm aspects, whereas at 1%((w/v)) they had a pronounced effect on virulence gene expression and a limited effect on inflammatory potential. Conclusion: Overall, this study identified four new potential prebiotic substrates that exhibit different modulatory effects at two different concentrations that cause in vitro multi-species oral biofilms to become more host-compatible

    Scales and structure of frontal adjustment and freshwater export in a region of freshwater influence

    Get PDF
    Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring-neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5-10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring-neap cycle may have important implications for biogeochemical cycles within the ba

    Combined Wideband Active Load-Pull and Modulation Distortion Characterization with a Vector Network Analyzer

    Full text link
    We present a demonstrator set-up for amplifier error-vector magnitude (EVM) characterization in the presence of wideband load termination arbitrarily set by the user through active modulated signal injection. In the proposed implementation, both the EVM characterization and the wideband active load-pull (WALP) technique are solely based on iso-frequency ratioed measurements obtainable with legacy vector network analyzer (VNA) technology. By avoiding broadband signal demodulation, this approach allows to remove any receiver bandwidth limitation, thus enhancing measurement accuracy and enabling realistic modulation distortion assessment across arbitrarily-wide test bandwidths. The method is tested on a packaged power amplifier circuit for 5 and 30 MHz modulation bandwidths around 1.2 GHz
    corecore