130 research outputs found

    Green-roof as a solution to solve stormwater management issues? Assessment on a long time period at the parcel scale

    Get PDF
    International audienceExperimental green-roof rainfall–runoff observations have shown a positive impact on stormwater management at the building scale; with a decrease in the peak discharge and a decrease in runoff volume. This efficiency of green-roofs varies from one rainfall event to another depending on precipitation characteristics and substrate antecedent conditions. Due to this variability, currently, green-roofs are rarely officially used as a regulation tool to manage stormwater. Indeed, regulation rules governing the connection to the stormwater network are usually based on absolute threshold values that always have to be respected: maximum areal flow-rate or minimum retention volume for example. In this context, the aim of this study is to illustrate how a green-roof could represent an alternative to solve stormwater management issues, if the regulation rules were further based on statistics. For this purpose, a modelling scheme has been established at the parcel scale to simulate the hydrological response of several roof configurations: impervious, strictly regulated (in terms of areal flow-rate or retention volume), and covered by different types of green-roof matter. Simulations were carried out on a long precipitation time period (23 years) that included a large and heterogeneous set of hydrometeorological conditions. Results obtained for the different roof configurations were compared. Based on the return period of the rainfall event, the probability to respect some regulation rules (defined from real situations) was assessed. They illustrate that green-roofs reduce stormwater runoff compared to an impervious roof surface and can guarantee the respect of the regulation rules in most of the cases. Moreover, their implementation can appear more realistic than that of other infrastructures strictly complying with regulations and demanding significant storage capacity

    Performance of Green roof in stormwater management regarding high-resolution precipitation fields

    Get PDF
    International audienceAt the basin scale, green roofs can represent an efficient tool to manage stormwater in urbanized areas. Widely implemented and/or completed with additional sustainable urban drainage systems, they show a positive impact on urban runoff: decrease and slowdown of the peak discharge and decrease of runoff volume. To assess green roof performances at this scale, a specific module dedicated to simulate their hydrological behaviour has been developed in the Multi-Hydro rainfall-runoff model. Its distributed structure gives the opportunity to test the susceptibility of green roof response regarding spatial distributions of precipitation. Based on radar rainfall fields, an ensemble of 50 realistic downscaled rainfall fields with a resolution of 10 m in space has been generated by using multifractals downscaling technique. Simulations have been conducted on a small urban catchment close to Paris (France) where most of the buildings roofs are assumed to easily accept the implementation of green roof. Although green roof confirm their ability to reduce urban runoff, these results illustrate that peak discharge reduction seems to be clearly dependant of spatial distribution of precipitation. Implementation of green roof can also produce concomitance situations and higher peak discharges than those produced by impervious roofs

    Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Get PDF
    International audienceCurrently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied

    Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area

    Get PDF
    Nature-based solutions have appeared as relevant solutions to mitigate urban heat islands. To improve our knowledge of the assessment of this ecosystem service and the related physical processes (evapotranspiration), monitoring campaigns are required. This was the objective of several experiments carried out on the Blue Green Wave, a large green roof located in Champs-sur-Marne (France). Three different protocols were implemented and tested to assess the evapotranspiration flux at different scales: the first one was based on the surface energy balance (large scale); the second one was carried out using an evapotranspiration chamber (small scale); and the third one was based on the water balance evaluated during dry periods (point scale). In addition to these evapotranspiration estimates, several hydrometeorological variables (especially temperature) were measured. Related data and Python programs providing preliminary elements of the analysis and graphical representation have been made available. They illustrate the space–time variability in the studied processes regarding their observation scale. The dataset is available at https://doi.org/10.5281/zenodo.8064053 (Versini et al., 2023).</p

    Use of green roofs to solve storm water issues at the basin scale – Study in the Hauts-de-Seine County (France)

    Get PDF
    International audienceAt the building scale, green roof has demonstrated a positive impact on urban runoff (decrease in the peak discharge and runoff volume). This work aims to study if similar impacts can be observed at basin scale. It is particularly focused on the possibility to solve some operational issues caused by storm water.For this purpose, a methodology has been proposed. It combines: a method to estimate the maximum roof area that can be covered by green roof, called green roofing potential, and an urban rainfall-runoff model able to simulate the hydrological behaviour of green roof.This methodology was applied to two urban catchments affected one by flooding and the other one by combined sewage overflow. The results show that green roof can reduce the frequency and the magnitude of such problems depending on the covered roof surface. Combined with other infrastructures, they represent an interesting solution for urban water management

    Characterization of the Evapotranspiration flux on a Blue Green Solution (Blue Green Wave)

    Get PDF
    International audienceThe rapid growth of urban areas, jointly with the effects of climate change, is the major challenge to face the transition towards sustainable cities. Climate change leads to substantial modifications of the water cycle in cities, increasing the frequency of intense precipitation, drought and heat wave events. The replacement of natural surfaces by dark and impervious ones is the main cause of Urban Heat Islands (UHI) phenomenon. UHIs are microclimates characterized by significant temperature differences between inner cities and the surrounding rural areas. Part of a solution to tackle this issue is the re-naturalization of cities through the installation of Blue Green Solutions (BGS), such as green roofs, favoring the evapotranspiration (ET) process and thus reducing the air temperature. To benefit BGS implementation, it is crucial to understand the thermo-hydric processes that govern them. For this purpose, the ET process of a 1 ha green roof implemented in front of the Ecole de Ponts ParisTech (France) called Blue Green Wave (BGW) was studied to determine its possible cooling effect to mitigate UHIs. Therefore, three methods were tested and compared to estimate ET: (i) the water balance during dry periods through the difference on the soil moisture content measured via a wireless sensors network, (ii) the absolute humidity measured by a dynamic transpiration chamber, and (iii) a scintillometer to assess the sensible heat flux, which allows to deduce the latent heat flux by computing the energy balance. The wireless sensors demonstrated to assess correctly ET trends over long time periods, while the dynamic chamber allows to identify more precisely the ET behavior during shorter periods of measurement due to a better resolution. Indeed, ET computed via the water budget appeared significantly high compared to the values estimated by the dynamic chamber, and without showing an obvious daily pattern. In addition, ET trends estimated by both scintillometer and transpiration chamber methods were very close, but the corresponding values suffered from a significant difference. The divergence in ET flux computed by the three methods can be caused by: (1) errors in the sensible heat flux estimated by the scintillometer, leading overestimations of the latent heat flux; (2) noisy data of soil water content, induced by the rainfall events and the local soil characteristics where the sensors are implemented, and (3) modifications of the atmospheric conditions within the transpiration chamber. More generally, ET appeared higher in spring season and during the first days of summer, when high temperatures were reached and soil water content was enough to support ET without inducing a deficit for plants. Conversely, despite significant temperatures at the end of summer, ET rate was lower due to the lack of water content in the soil. This suggests that during summer, when the UHI intensity is stronger and the cooling effects of the green roofs are needed, the ET potential could not be sufficient. To go further in the space-time characterization of ET flux, additional experiments and multi-fractal analysis will be carried out soon

    Simulation of Green Roof Impact at Basin Scale by Using a Distributed Rainfall-Runoff Model

    Get PDF
    International audienceCurrently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale, that is, decreased and slow peak discharge and decreases runoff volume. The aim was to study the possible impact of green roof at the catchment scale, more compatible with stormwater management issues. For this purpose, a distributed rainfall-runoff model (Multi-Hydro) devoted to urban environment and able to simulate the hydrological behaviour of green roof has been used to assess the green roof impact at such a scale. It has been applied on an urban catchment (Loup basin located in the Seine-Saint-Denis county, East of Paris, France) where most of the building roofs are flat and assumed to easily accept the implementation of green roof. Catchment responses to several rainfall events covering a wide range of meteorological situation have been simulated. The simulation results show that green roof can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and the initial saturation of the substrate
    • …
    corecore