62 research outputs found
Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma
International audienceSurgical resection of tumors is often followed by regrowth at the primary site and metastases may emerge rapidly following removal of the primary tumor. Macrophages are important drivers of tumor growth, and here we investigated their involvement in postoperative relapse as well as explore macrophage depletion as an adjuvant to surgical resection. RETAAD mice develop spontaneous metastatic melanoma that begins in the eye. Removal of the eyes as early as 1 week of age did not prevent the development of metastases; rather, surgery led to increased proliferation of tumor cells locally and in distant metastases. Surgery-induced increase in tumor cell proliferation correlated with increased macrophage density within the tumor. Moreover, macrophages stimulate tumor sphere formation from tumor cells of post-surgical but not control mice. Macrophage depletion with a diet containing the CSF-1R specific kinase inhibitor Ki20227 following surgery significantly reduced postoperative tumor recurrence and abrogated enhanced metastatic outgrowth. Our results confirm that tumor cells disseminate early, and show that macrophages contribute both to post-surgical tumor relapse and growth of metastases, likely through stimulating a population of tumor-initiating cells. Thus macrophage depletion warrants exploration as an adjuvant to surgical resection
Melanoma-initiating cells exploit M2 macrophage TGFβ and arginase pathway for survival and proliferation
International audienceM2 macrophages promote tumor growth and metastasis, but their interactions with specific tumor cell populations are poorly characterized. Using a mouse model of spontaneous melanoma, we showed that CD34 -but not CD34 + tumor-initiating cells (TICs) depend on M2 macrophages for survival and proliferation. Tumor-associated macrophages (TAMs) and macrophage-conditioned media protected CD34 -TICs from chemotherapy in vitro. In vivo, while inhibition of CD115 suppressed the macrophage-dependent CD34 -TIC population, chemotherapy accelerated its development. The ability of TICs to respond to TAMs was acquired during melanoma progression and immediately preceded a surge in metastatic outgrowth. TAM-derived transforming growth factor-β (TGFβ) and polyamines produced via the Arginase pathway were critical for stimulation of TICs and synergized to promote their growth
DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling
Dermal DC mobilization requires docking to CCL21 on lymphatic endotheliu
A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels.
Dendritic cells (DCs), macrophages (Mφ), and T cells are major components of the skin immune system, but their interstitial spatial organization is poorly characterized. Using four-channel whole-mount immunofluorescence staining of the human dermis, we demonstrated the three-dimensional distribution of CD31(+) blood capillaries, LYVE-1(+) lymphatics, discrete populations of CD11c(+) myeloid DCs, FXIIIa(+) Mφ, and lymphocytes. We showed phenotypic and morphological differences in situ between DCs and Mφ. DCs formed the first dermal cellular layer (0-20 μm beneath the dermoepidermal junction), Mφ were located deeper (40-60 μm), and CD3(+) lymphocytes were observed throughout (0-60 μm). Below this level, DCs, T cells, and the majority of Mφ formed stable perivascular sheaths. Whole-mount imaging revealed the true extent of dermal leukocytes previously underestimated from cross-section views. The total area of apical dermis (0-30 μm) contained approximately 10-fold more myeloid DCs than the entire blood volume of an average individual. Surprisingly, <1% of dermal DCs occupied lymphatics in freshly isolated skin. Dermal DCs rapidly accumulated within lymphatics, but Mφ remained fixed in skin explants cultured ex vivo. The leukocyte architecture observed in normal skin was distorted in inflammation and disease. These studies illustrate the micro-anatomy of dermal leukocytes and provide further insights into their functional organization
Injectable liposomal docosahexaenoic acid alleviates atherosclerosis progression and enhances plaque stability
Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake. To fully exploit its potential therapeutic effects, we have developed an injectable liposomal DHA formulation intended for intravenous administration as a plaque-targeted nanomedicine. The liposomal formulation protects DHA against chemical degradation and increases its local concentration within atherosclerotic lesions. Mechanistically, DHA liposomes are readily phagocytosed by activated macrophages, exert potent anti-inflammatory and antioxidant effects, and inhibit foam cell formation. Upon intravenous administration, DHA liposomes accumulate preferentially in atherosclerotic lesional macrophages and promote polarization of macrophages towards an anti-inflammatory M2 phenotype, resulting in attenuation of atherosclerosis progression in both ApoE−/− and Ldlr−/− experimental models. Plaque composition analysis demonstrates that liposomal DHA inhibits macrophage infiltration, reduces lipid deposition, and increases collagen content, thus improving the stability of atherosclerotic plaques against rupture. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) further reveals that DHA liposomes can partly restore the complex lipid profile of the plaques to that of early-stage plaques. In conclusion, DHA liposomes offer a promising approach for applying DHA to stabilize atherosclerotic plaques and attenuate atherosclerosis progression, thereby preventing atherosclerosis-related cardiovascular events
Open Source ImmGen: network perspective on metabolic diversity among mononuclear phagocytes
We dissect metabolic variability of mononuclear phagocyte (MNP) subpopulations across different tissues through integrative analysis of three large scale datasets. Specifically, we introduce ImmGen MNP Open Source dataset that profiled 337 samples and extended previous ImmGen effort which included 202 samples of mononuclear phagocytes and their progenitors. Next, we analysed Tabula Muris Senis dataset to extract data for 51,364 myeloid cells from 18 tissues. Taken together, a compendium of data assembled in this work covers phagocytic populations found across 38 different tissues. To analyse common metabolic features, we developed novel network-based computational approach for unbiased identification of key metabolic subnetworks based on cellular transcriptional profiles in large-scale datasets. Using ImmGen MNP Open Source dataset as baseline, we define 9 metabolic subnetworks that encapsulate the metabolic differences within mononuclear phagocytes, and demonstrate that these features are robustly found across all three datasets, including lipid metabolism, cholesterol biosynthesis, glycolysis, and a set of fatty acid related metabolic pathways, as well as nucleotide and folate metabolism. We systematically define major features specific to macrophage and dendritic cell subpopulations. Among other things, we find that cholesterol synthesis appears particularly active within the migratory dendritic cells. We demonstrate that interference with this pathway through statins administration diminishes migratory capacity of the dendritic cells in vivo. This result demonstrates the power of our approach and highlights importance of metabolic diversity among mononuclear phagocytes
Biomechanical control of lymphatic vessel physiology and functions
10.1038/s41423-023-01042-9CELLULAR & MOLECULAR IMMUNOLOGY20
Lymphatic Vessels at the Heart of the Matter
Emergent research in the past decades has brought to light the importance of lymphatic vessels in tissue homeostasis, immunity, metabolism, and inflammation. In Nature, Klotz et al. (2015) demonstrate that cardiac lymphatics have a unique ontology compared to visceral lymphatics and that promoting their growth can improve cardiac function following injury
- …