5 research outputs found
Interaction of Nd:YAG Laser Radiation with Bovine Serum Albumin Solution
In this paper, the effect of Nd:YAG laser radiation on the properties of the BSA protein is investigated. A solution with a protein concentration of 5 mg/ml was irradiated for 30 minutes. After a 5-minute and 30-minute exposure, absorption spectra were taken, the particle size in the solution was determined by dynamic light scattering (DLS), the refractive index was determined, and fluorescent maps were taken. Raman spectroscopy of proteins was also performed. The results showed that after irradiation, the absorption of the protein solution decreases in the spectral range corresponding to amino acid residues. In DLS experiments, it was shown that the peak corresponding to protein molecules decreases, and the peaks corresponding to large aggregates (>100 nm) grow. Raman spectroscopy has shown that there is a decrease in intensity at a wavelength of 1570 cm-1. There were no significant changes in the refractive indices and the shape of the fluorescent maps. The data suggest that partial denaturation of proteins took place
Interaction of Nd:YAG Laser Radiation with Bovine Serum Albumin Solution
In this paper, the effect of Nd:YAG laser radiation on the properties of the BSA protein is investigated. A solution with a protein concentration of 5 mg/ml was irradiated for 30 minutes. After a 5-minute and 30-minute exposure, absorption spectra were taken, the particle size in the solution was determined by dynamic light scattering (DLS), the refractive index was determined, and fluorescent maps were taken. Raman spectroscopy of proteins was also performed. The results showed that after irradiation, the absorption of the protein solution decreases in the spectral range corresponding to amino acid residues. In DLS experiments, it was shown that the peak corresponding to protein molecules decreases, and the peaks corresponding to large aggregates (>100 nm) grow. Raman spectroscopy has shown that there is a decrease in intensity at a wavelength of 1570 cm-1. There were no significant changes in the refractive indices and the shape of the fluorescent maps. The data suggest that partial denaturation of proteins took place
Modeling the Kinetics of the Singlet Oxygen Effect in Aqueous Solutions of Proteins Exposed to Thermal and Laser Radiation
A system of kinetic equations describing the changes in the concentration of reactive oxygen species (ROS) in aqueous solutions of proteins was obtained from the analysis of chemical reactions involving singlet oxygen. Applying the condition of the stationarity of the intermediate products to the system, we determined the functional dependence of the hydrogen peroxide concentration on the protein concentration under the action of thermal and laser radiation. An approximate analytical solution to the nonlinear system of differential equations that define the ROS concentration dynamics was found. For aqueous solutions of bovine serum albumin (BSA) and bovine gamma globulin (BGG), the orders and rate constants of the reactions describing the ROS conversions were determined by minimizing the sum of squared deviations of the functions found by solving both the static and dynamic problems from experimentally measured dependences. When solving the optimization problem, the Levenberg–Marquardt algorithm was used
New Application of the Commercially Available Dye Celestine Blue B as a Sensitive and Selective Fluorescent “Turn-On” Probe for Endogenous Detection of HOCl and Reactive Halogenated Species
Hypochlorous acid (HOCl) derived from hydrogen peroxide and chloride anion by myeloperoxidase (MPO) plays a significant role in physiological and pathological processes. Herein we report a phenoxazine-based fluorescent probe Celestine Blue B (CB) that is applicable for HOCl detection in living cells and for assaying the chlorinating activity of MPO. A remarkable selectivity and sensitivity (limit of detection is 32 nM), along with a rapid “turn-on” response of CB to HOCl was demonstrated. Furthermore, the probe was able to detect endogenous HOCl and reactive halogenated species by fluorescence spectroscopy, confocal microscopy, and flow cytometry techniques. Hence, CB is a promising tool for investigating the role of HOCl in health and disease and for screening the drugs capable of regulating MPO activity