73 research outputs found

    Cats or CAT scans: transfer learning from natural or medical image source datasets?

    Get PDF
    Transfer learning is a widely used strategy in medical image analysis. Instead of only training a network with a limited amount of data from the target task of interest, we can first train the network with other, potentially larger source datasets, creating a more robust model. The source datasets do not have to be related to the target task. For a classification task in lung CT images, we could use both head CT images, or images of cats, as the source. While head CT images appear more similar to lung CT images, the number and diversity of cat images might lead to a better model overall. In this survey we review a number of papers that have performed similar comparisons. Although the answer to which strategy is best seems to be "it depends", we discuss a number of research directions we need to take as a community, to gain more understanding of this topic.Comment: Accepted to Current Opinion in Biomedical Engineerin

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning

    Full text link
    Deep learning has led to state-of-the-art results for many medical imaging tasks, such as segmentation of different anatomical structures. With the increased numbers of deep learning publications and openly available code, the approach to choosing a model for a new task becomes more complicated, while time and (computational) resources are limited. A possible solution to choosing a model efficiently is meta-learning, a learning method in which prior performance of a model is used to predict the performance for new tasks. We investigate meta-learning for segmentation across ten datasets of different organs and modalities. We propose four ways to represent each dataset by meta-features: one based on statistical features of the images and three are based on deep learning features. We use support vector regression and deep neural networks to learn the relationship between the meta-features and prior model performance. On three external test datasets these methods give Dice scores within 0.10 of the true performance. These results demonstrate the potential of meta-learning in medical imaging

    Exploring the similarity of medical imaging classification problems

    Full text link
    Supervised learning is ubiquitous in medical image analysis. In this paper we consider the problem of meta-learning -- predicting which methods will perform well in an unseen classification problem, given previous experience with other classification problems. We investigate the first step of such an approach: how to quantify the similarity of different classification problems. We characterize datasets sampled from six classification problems by performance ranks of simple classifiers, and define the similarity by the inverse of Euclidean distance in this meta-feature space. We visualize the similarities in a 2D space, where meaningful clusters start to emerge, and show that the proposed representation can be used to classify datasets according to their origin with 89.3\% accuracy. These findings, together with the observations of recent trends in machine learning, suggest that meta-learning could be a valuable tool for the medical imaging community

    Revisiting Hidden Representations in Transfer Learning for Medical Imaging

    Full text link
    While a key component to the success of deep learning is the availability of massive amounts of training data, medical image datasets are often limited in diversity and size. Transfer learning has the potential to bridge the gap between related yet different domains. For medical applications, however, it remains unclear whether it is more beneficial to pre-train on natural or medical images. We aim to shed light on this problem by comparing initialization on ImageNet and RadImageNet on seven medical classification tasks. We investigate their learned representations with Canonical Correlation Analysis (CCA) and compare the predictions of the different models. We find that overall the models pre-trained on ImageNet outperform those trained on RadImageNet. Our results show that, contrary to intuition, ImageNet and RadImageNet converge to distinct intermediate representations, and that these representations are even more dissimilar after fine-tuning. Despite these distinct representations, the predictions of the models remain similar. Our findings challenge the notion that transfer learning is effective due to the reuse of general features in the early layers of a convolutional neural network and show that weight similarity before and after fine-tuning is negatively related to performance gains.Comment: Submitted to the CHIL 2023 Track 2: Applications and Practic
    • …
    corecore