6 research outputs found
The Effects of Daytime Psilocybin Administration on Sleep: Implications for Antidepressant Action
Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin’s antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28–53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep
Prediction of the Antidepressant Effect of Ketamine Based on Clinical Parameters and Intoxication Phenomenology
Background: ketamine is a rapid and potent antidepressant treatment, however no sufficient predictors for tailored treatment have been identified to date. The aim of the thesis was to identify possible clinical and phenomenological characteristics, associated with better antidepressant response in patients receiving ketamine. Materials and methods: data from 86 depressed patients from cohorts A (2010-2015) and B (2018-2022) were utilized. All patients underwent ketamine infusion and demographic as well as clinical assessment (severity of depressive symptoms, subjective and objective anxiety and anhedonia before and after ketamine application). In addition, an electrocardiogram was taken to assess heart rate variability in cohort A and blood pressure, heart rate, and altered state of consciousness scales were recorded in cohort B during ketamine intoxication. Results: in cohort A, the use of higher doses of benzodiazepines was associated with worse response at day 3 (p = 0.04) and day 7 (p = 0.02) after ketamine administration. Responders showed higher heart rate (p = 0.001) and differed from nonresponders in heart rate variability (p = 0.011). In cohort B, responders reached higher values od systolic (p = 0.003) and diastolic (p = 0.005) blood pressure during intoxication, but not higher heart..
Predictive value of heart rate in treatment of major depression with ketamine in two controlled trials
Objective: Ketamine has been shown to be effective in treatment of episodes of major depressive disorder (MDD). This controlled study aimed to analyse the predictive and discriminative power of heart rate (HR) and heart rate variability (HRV) for ketamine treatment in MDD.
Methods: In 51 patients, HR and HRV were assessed at baseline before and during ketamine infusion and 24 hours post ketamine infusion. Montgomery-Åsberg Depression Rating Scale (MADRS) was used to assess changes of depressive symptoms. A 30% or 50% reduction of symptoms after 24 hours or within 7 days was defined as response. A linear mixed model was used for analysis.
Results: Ketamine infusion increased HR and HRV power during and after infusion. Responders to ketamine showed a higher HR during the whole course of investigation, including at baseline with medium effect sizes (Cohen's d = 0.47-0.67). Furthermore, HR and HRV power discriminated between responders and non-responders, while normalized low and high frequencies did not.
Conclusion: The findings show a predictive value of HR and HRV power for ketamine treatment. This further underlines the importance of the autonomous nervous system (ANS) and its possible malfunctions in MDD.
Significance: The predictive power of HR and HRV markers should be studied in prospective studies. Neurophysiological markers could improve treatment for MDD via optimizing the choice of treatments
Psilocybin - mediated attenuation of gamma band auditory steady-state responses (ASSR) is driven by the intensity of cognitive and emotional domains of psychedelic experience
Psilocybin is a classical serotoninergic psychedelic that induces cognitive disruptions similar to psychosis. Gamma activity is affected in psychosis and is tightly related to cognitive processing. The 40 Hz auditory steady-state responses (ASSR) are frequently used as indicators to test the ability to generate gamma activity. Based on previous literature, we studied the impact of psilocybin on 40 Hz ASSR in healthy volunteers. The study was double blind and placebo controlled with a crossover design. A sample of 20 healthy subjects (10M/10F) received psilocybin orally 0.26 mg/kg or placebo. Participants were measured four times in total, one time before ingestion of psilocybin/placebo and one time after ingestion, during the peak of intoxication. A series of 500 ms click trains were used for stimulation. Psilocybin induced a psychedelic effect and decreased 40 Hz ASSR phase-locking index compared to placebo. The extent of the attenuation was related to Cognition and Affect on the Hallucinogen Rating Scale. The current study shows that psilocybin lowers the synchronization level and the amplitude of 40 Hz auditory steady-state responses, which yields further support for the role of gamma oscillations in cognitive processing and its disturbance
Recommended from our members
The Effects of Daytime Psilocybin Administration on Sleep: Implications for Antidepressant Action.
Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin's antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28-53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep