10 research outputs found

    Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement

    No full text
    Among the waste materials of wine production, grape seeds constitute an important fraction of the pomace, from which the precious edible oil is extracted. The residual mass from oil extraction, the defatted grape seeds (DGS), can be destined for composting or valorized according to the circular economy rules to produce pyrolytic biochar by gasification or pellets for integral energy recovery. Only a small quantity is used for subsequent extraction of polyphenols and tannins. In this study, we performed a chemical characterization of the DGS, by applying spectroscopic techniques (ICP-OES) to determine the metal content, separation techniques (HS-SPME-GC-MS) to evaluate the volatile fraction, and thermal methods of analysis (TGA-MS-EGA) to identify different matrix constituents. Our main goal is to obtain information about the composition of DGS and identify some bioactive compounds constituting the matrix in view of possible future applications. The results suggest that DGS can be further exploited as a dietary supplement, or as an enriching ingredient in foods, for example, in baked goods. Defatted grape seed flour can be used for both human and animal consumption, as it is a source of functional macro- and micronutrients that help in maintaining optimal health and well-being conditions

    Volatile Aroma Compounds of Gavina® Watermelon (Citrullus Lanatus L.) Dietary Fibers to Increase Food Sustainability

    No full text
    To deal with climate emergency and reduce environmental impact, agro-industrial wastes are gradually gaining interest and are being used for new products and applications. The large production of watermelons represents an opportunity because of the many byproducts that can be transformed into innovative and valuable foodstuffs. In this study, we examined the lycopene-rich whole dietary fiber (WDF) obtained from the watermelon pomace of a peculiar cultivar, Gavina® (Oristano, Italy) a seedless fruit from Sardinia (Italy). The volatile chemical composition of the WDF was investigated using Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). The aim was to follow the evolution of the Volatile Organic Compounds (VOCs) fraction during storage and verify its stability over time. Since watermelon is an excellent source of carotenoids, their byproducts were the most abundant VOCs of the freshly prepared samples, but their overall abundance decreased significantly during storage. The opposite trend was observed for acids and aldehydes, whose increase over time is related to amino acid degradation. Freshly prepared WDF can be used in the food industry as an antioxidant-rich dietary fiber that imparts a characteristic and pleasant aroma. Over time, its aroma profile and carotenoid content change considerably, reducing its health properties and limiting its potential application as a natural flavor
    corecore