2 research outputs found

    Distinguishing blaKPC -gene-containing IncF plasmids from epidemiologically related and unrelated Enterobacteriaceae based on short- and long-read sequence data

    Get PDF
    BACKGROUND: Limited information is available on whether blaKPC -containing plasmids from isolates in a hospital outbreak can be differentiated from epidemiologically unrelated blaKPC-containing plasmids based on sequence data. This study aimed to evaluate the performance of three approaches to distinguish epidemiologically related from unrelated blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids. METHOD: Epidemiologically related isolates, were short- and long-read whole genome sequenced. A hybrid assembly was performed and plasmid sequences were extracted from the assembly graph. Epidemiologically unrelated plasmid sequences were extracted from the GenBank. Pairwise comparisons were performed of epidemiologically related and unrelated plasmids based on SNP differences using snippy, phylogenetic distance using Roary and using a similarity index that penalizes size differences between plasmids (Stoesser-index). The percentage of pairwise comparisons misclassified as genetically related or as clonally unrelated was determined using different genetic thresholds for genetic relatedness. RESULTS: The ranges in number of SNP differences, Roary phylogenetic distance, and Stoesser-index overlapped between the epidemiologically related and unrelated plasmids. When using a genetic similarity threshold that classified 100% of epidemiologically related plasmid pairs as genetically related, the percentages of plasmids misclassified as epidemiologically related ranged from 6.7% (Roary) to 20.8% (Stoesser-index). DISCUSSION: Although epidemiologically related plasmids can be distinguished from unrelated plasmids based on genetic differences, blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids show a high degree of sequence similarity. The phylogenetic distance as determined using Roary showed the highest degree of discriminatory power between the epidemiologically related and unrelated plasmids

    SARS-CoV-2 Alpha-Variant Outbreak Amongst a Partially Vaccinated Long-Term Care Facility Population in The Netherlands—Phylogenetic Analysis and Infection Control Observations

    No full text
    Despite extensive vaccination and booster programs, SARS-CoV-2 outbreaks in long-term care facilities (LTCF) continue to occur. We retrospectively describe a SARS-CoV-2 outbreak amongst a partially vaccinated LTCF population in The Netherlands which occurred in March 2021. The facility comprised three floors functioning as separate wards. Nasopharyngeal swabs for SARS-CoV-2 qRT-PCR were obtained from residents and staff presenting with COVID-19-like symptoms and from all residents and staff during two point prevalence screenings (PPS). Samples meeting technical criteria were included for phylogenetic analysis. Positive SARS-CoV-2 qRT-PCR were obtained from 11 (18%) of 61 residents and 8 (7%) of 110 staff members between March 8 and March 25. Seven (37%) cases and five (63%) vaccinated cases were diagnosed through PPS. Cases were found on all wards. Phylogenetic analysis (n = 11) showed a maximum difference of four nucleotides between sequences on the outer branches of the tree, but identified two identical sequences on the root differing maximum two nucleotides from all other sequences, suggesting all did belong to the same cluster. Our results imply that PPS is useful in containing SARS-CoV-2 outbreaks amongst (vaccinated) LTCF populations, as an entire LTCF might behave as a single epidemiological unit and it is preferable to maximize the number of samples included for phylogenetic analysis
    corecore