9 research outputs found

    Analytic extensions of Starobinsky model of inflation

    Get PDF
    We study several extensions of the Starobinsky model of inflation, which obey all observational constraints on the inflationary parameters, by demanding that both the inflaton scalar potential in the Einstein frame and the F(R) gravity function in the Jordan frame have the explicit dependence upon fields and parameters in terms of elementary functions. Our models are continuously connected to the original Starobinsky model via changing the parameters. We modify the Starobinsky (R + R 2) model by adding an R 3-term, an R 4-term, and an R 3/2-term, respectively, and calculate the scalar potentials, the inflationary observables and the allowed limits on the deformation parameters by using the latest observational bounds. We find that the tensor-to-scalar ratio in the Starobinsky model modified by the R 3/2-term significantly increases with raising the parameter in front of that term. On the other side, we deform the scalar potential of the Starobinsky model in the Einstein frame in powers of y = exp(-(2/3)φ/M Pl), where φ is the canonical inflaton (scalaron) field, calculate the corresponding F(R) gravity functions in the two new cases, and find the restrictions on the deformation parameters in the lowest orders with respect to the variable y that is physically small during slow-roll inflation

    Non-minimally Coupled Cosmological Models with the Higgs-like Potentials and Negative Cosmological Constant

    Full text link
    We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.Comment: 22 pages, 6 figures, v4:Section 2 expanded, references added, accepted for publication in Class. Quant. Gra

    Bouncing and Accelerating Solutions in Nonlocal Stringy Models

    Full text link
    A general class of cosmological models driven by a non-local scalar field inspired by string field theories is studied. In particular cases the scalar field is a string dilaton or a string tachyon. A distinguished feature of these models is a crossing of the phantom divide. We reveal the nature of this phenomena showing that it is caused by an equivalence of the initial non-local model to a model with an infinite number of local fields some of which are ghosts. Deformations of the model that admit exact solutions are constructed. These deformations contain locking potentials that stabilize solutions. Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE

    Cosmological perturbations in SFT inspired non-local scalar field models

    Full text link
    We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields.Comment: 21 pages, no figures, v3: presentation improved, results unchanged, references adde
    corecore