47 research outputs found

    Observation of progressive motion of ac-driven solitons

    Full text link
    We report the first experimental observation of phase-locked motion of a topological soliton at a nonzero average velocity in a periodically modulated lossy medium, under the action of an ac force with no dc component [the effect was predicted by G. Filatrella, B.A. Malomed, and R.D. Parmentier, Phys. Lett. A 198, 43 (1995)]. The velocity is related by a resonant condition to the driving frequency. The observation is made in terms of the current-voltage, I(V), characteristics for a fluxon trapped in an annular Josephson junction placed into dc magnetic field. Large zero-crossing constant-voltage steps, exactly corresponding to the resonantly locked soliton motion at different orders of the resonance, are found on the experimental I(V) curves. A measured dependence of the size of the steps vs. the external magnetic field is in good agreement with predictions of an analytical model based on the balance equation for the fluxon's energy. The effect has a potential application as a low-frequency voltage standard. The work was supported by a grant from the German-Israeli Foundation.Comment: Physical Review B, in press (Rapid Communication

    Resonant flux motion and I-V -characteristics in frustrated Josephson junctions

    Full text link
    We describe the dynamics of fluxons moving in a frustrated Josephson junction with p, d, and f-wave symmetry and calculate the I-V characteristics. The behavior of fluxons is quite distinct in the long and short length junction limit. For long junctions the intrinsic flux is bound at the center and the moving integer fluxon or antifluxon interacts with it only when it approaches the junction's center. For small junctions the intrinsic flux can move as a bunched type fluxon introducing additional steps in the I-V characteristics. Possible realization in quantum computation is presented.Comment: 21 pages, 8 figure

    Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization

    No full text
    Hydraulic overpressure can induce fractures and increase permeability in a range of geological settings, including volcanological, glacial and petroleum reservoirs. Here we consider an example of induced hydraulic fracture stimulation in a tight-gas sandstone. Successful exploitation of tight-gas reservoirs requires fracture networks, either naturally occurring, or generated through hydraulic stimulation. The study of seismic anisotropy provides a means to infer properties of fracture networks, such as the dominant orientation of fracture sets and fracture compliances. Shear wave splitting from microseismic data acquired during hydraulic fracture stimulation allows us to not only estimate anisotropy and fracture properties, but also to monitor their evolution through time. Here, we analyse shear wave splitting using microseismic events recorded during a multistage hydraulic fracture stimulation in a tight-gas sandstone reservoir. A substantial rotation in the dominant fast polarization direction (ψ) is observed between the events of stage 1 and those from later stages. Although large changes in ψ have often been linked to stress-induced changes in crack orientation, here we argue that it can better be explained by a smaller fracture rotation coupled with an increase in the ratio of normal to tangential compliance (ZN/ZT) from 0.3 to 0.6. ZN/ZT is sensitive to elements of the internal architecture of the fracture, as well as fracture connectivity and permeability. Thus, monitoring ZN/ZT with shear wave splitting can potentially allow us to remotely detect changes in permeability caused by hydraulic stimulation in a range of geological settings

    Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media

    Get PDF
    Reservoir characterization of sand-shale sequences has always challenged geoscientists due to the presence of anisotropy in the form of shale lenses or shale layers. Water saturation and volume of shale are among the fundamental reservoir properties of interest for sand-shale intervals, and relate to the amount of fluid content and accumulating potentials of such media. This paper suggests an integrated workflow using synthetic data for the characterization of shaley-sand media based on anisotropic rock physics (T-matrix approximation) and seismic reflectivity modelling. A Bayesian inversion scheme for estimating reservoir parameters from amplitude vs. offset (AVO) data was used to obtain the information about uncertainties as well as their most likely values. The results from our workflow give reliable estimates of water saturation from AVO data at small uncertainties, provided background sand porosity values and isotropic overburden properties are known. For volume of shale, the proposed workflow provides reasonable estimates even when larger uncertainties are present in AVO data

    The performance of stochastic designs in wellbore drilling operations

    Get PDF
    © 2018, The Author(s). Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis—where the operating conditions are predicted by conventional modelling procedures—and then a probabilistic analysis via stochastic simulations—where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.Published versio

    A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Get PDF
    This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity assessments of notch-type defects", for the Spanish Ministry of Science and Innovation (Ref.: MAT2010-15721)

    Cellular Basis of Tissue Regeneration by Omentum

    Get PDF
    The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells
    corecore