145 research outputs found
Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment
We present the investigation on the modifications of structural and magnetic
properties of MnAs thin film epitaxially grown on GaAs induced by slow highly
charged ions bombardment under well-controlled conditions. The ion-induced
defects facilitate the nucleation of one phase with respect to the other in the
first-order magneto-structural MnAs transition with a consequent suppression of
thermal hysteresis without any significant perturbation on the other structural
and magnetic properties. In particular, the irradiated film keeps the giant
magnetocaloric effect at room temperature opening new perspective on magnetic
refrigeration technology for everyday use
Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source
We have performed a systematic study of the Bremsstrahlung emission from the
electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance
Ion Source. The electronic spectral temperature and the product of ionic and
electronic densities of the plasma are measured by analyzing the Bremsstrahlung
spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the
injected power. Within our uncertainty, we find an average temperature of ? 48
keV above 100W, with a weak dependency on the injected power and gas
composition. Charge state distributions of extracted ion beams have been
determined as well, providing a way to disentangle the ionic density from the
electronic density. Moreover X-ray emission from highly charged argon ions in
the plasma has been observed with a high-resolution mosaic crystal
spectrometer, demonstrating the feasibility for high-precision measurements of
transition energies of highly charged ions, in particular of the magnetic
dipole (M1) transition of He-like of argon ions
Mastering disorder in a first-order transition by ion irradiation
The effect of ion bombardment on MnAs single crystalline thin films is
studied. The role of elastic collisions between ions and atoms of the material
is singled-out as the main process responsible for modifying the properties of
the material. Thermal hysteresis suppression, and the loss of sharpness of the
magneto-structural phase transition are studied as a function of different
irradiation conditions. While the latter is shown to be associated with the ion
induced disorder at the scale of the transition correlation length, the former
is related to the coupling between disorder and the large-scale elastic field
associated with the phase coexistence pattern
Magnetic properties changes of MnAs thin films irradiated with highly charged ions
We present the first investigation on the effect of highly charged ion
bombardment on a manganese arsenide thin film. The MnAs films, 150 nm thick,
are irradiated with 90 keV Ne ions with a dose varying from
to ions/cm. The structural and
magnetic properties of the film after irradiation are investigated using
different techniques, namely, X-ray diffraction, magneto-optic Kerr effect and
magnetic force microscope. Preliminary results are presented. From the study of
the lattice spacing, we measure a change on the film structure that depends on
the received dose, similarly to previous studies with other materials.
Investigations on the surface show a strong modification of its magnetic
properties
Ion slowing down and charge exchange at small impact parameters selected by channeling: superdensity effects
CASInternational audienceIn two experiments performed with 20-30 MeV/u highly charged heavy ions (Pb56+, U91+) channeled through thin silicon crystals, we observed the original features of superdensity, associated to the glancing collisions with atomic rows undergone by part of the incident projectiles. In particular the very high collision rate yields a quite specific charge exchange regime, that leads to a higher ionization probability than in random conditions. X-ray measurements show that electrons captured in outershells are prevented from being stabilized, which enhances the lifetime of the projectile innershell vacancies. The charge state distributions and the energy loss spectra are compared to Monte-Carlo simulations. These simulations confirm, extend and illustrate the qualitative analysis of the experimental results
Treatment of Fabry Disease: Outcome of a Comparative Trial with Agalsidase Alfa or Beta at a Dose of 0.2 mg/kg
Two different enzyme preparations, agalsidase alfa (Replagal(TM), Shire) and beta (Fabrazyme(TM), Genzyme), are registered for treatment of Fabry disease. We compared the efficacy of and tolerability towards the two agalsidase preparations administered at identical protein dose in a randomized controlled open label trial.Thirty-four Fabry disease patients were treated with either agalsidase alfa or agalsidase beta at equal dose of 0.2 mg/kg biweekly. Primary endpoint was reduction in left ventricular mass after 12 and 24 months of treatment. Other endpoints included occurrence of treatment failure (defined as progression of cardiac, renal or cerebral disease), glomerular filtration rate, pain, anti-agalsidase antibodies, and globotriaosylceramide levels in plasma and urine. After 12 and 24 months of treatment no reduction in left ventricular mass was seen, which was not different between the two treatment groups. Also, no differences in glomerular filtration rate, pain and decline in globotriaosylceramide levels were found. Antibodies developed only in males (4/8 in the agalsidase alfa group and 6/8 in the agalsidase beta group). Treatment failure within 24 months of therapy was seen in 8/34 patients: 6 male patients (3 in each treatment group) and 2 female patients (both agalsidase alfa). The occurrence of treatment failures did not differ between the two treatment groups; chi(2) = 0.38 p = 0.54.Our study revealed no difference in reduction of left ventricular mass or other disease parameters after 12 and 24 months of treatment with either agalsidase alfa or beta at a dose of 0.2 mg/kg biweekly. Treatment failure occurred frequently in both groups and seems related to age and severe pre-treatment disease.International Standard Randomized Clinical Trial ISRCTN45178534 [http://www.controlled-trials.com/ISRCTN45178534]
Bone Biomarkers Help Grading Severity of Coronary Calcifications in Non Dialysis Chronic Kidney Disease Patients
BACKGROUND: Osteoprotegerin (OPG) and fibroblast growth factor-23 (FGF23) are recognized as strong risk factors of vascular calcifications in non dialysis chronic kidney disease (ND-CKD) patients. The aim of this study was to investigate the relationships between FGF23, OPG, and coronary artery calcifications (CAC) in this population and to attempt identification of the most powerful biomarker of CAC: FGF23? OPG? METHODOLOGY/PRINCIPAL FINDINGS: 195 ND-CKD patients (112 males/83 females, 70.8 [27.4-94.6] years) were enrolled in this cross-sectional study. All underwent chest multidetector computed tomography for CAC scoring. Vascular risk markers including FGF23 and OPG were measured. Logistic regression analyses were used to study the potential relationships between CAC and these markers. The fully adjusted-univariate analysis clearly showed high OPG (≥10.71 pmol/L) as the only variable significantly associated with moderate CAC ([100-400[) (OR = 2.73 [1.03;7.26]; p = 0.04). Such association failed to persist for CAC scoring higher than 400. Indeed, severe CAC was only associated with high phosphate fractional excretion (FEPO(4)) (≥38.71%) (OR = 5.47 [1.76;17.0]; p = 0.003) and high FGF23 (≥173.30 RU/mL) (OR = 5.40 [1.91;15.3]; p = 0.002). In addition, the risk to present severe CAC when FGF23 level was high was not significantly different when OPG was normal or high. Conversely, the risk to present moderate CAC when OPG level was high was not significantly different when FGF23 was normal or high. CONCLUSIONS: Our results strongly suggest that OPG is associated to moderate CAC while FGF23 rather represents a biomarker of severe CAC in ND-CKD patients
- …