31 research outputs found

    Permeability of mixed soft and hard granular material: hydrogels as drainage modifiers

    Full text link
    We measure the flow of water through mixed packings of glass spheres and soft swellable hydrogel grains, at constant sample volume. Permeability values are obtained at constant sample volume and at porosities smaller than random close packing, for different glass bead diameters DD and for variable gel grain diameter dd, as controlled by the salinity of the water. The gel content is also varied. We find that the permeability decays exponentially in n(D/d)bn(D/d)^b where n=Ngel/Nglassn=N_{gel}/N_{glass} is the gel to glass bead number ratio and bb is approximately 3. Therefore, flow properties are determined by the volume fraction of gel beads. A simple model based on the porosity of overlapping spheres is used to account for these observations

    Poroelastic indentation of mechanically confined hydrogel layers

    Full text link
    We report on the poroelastic indentation response of hydrogel thin films geometrically confined within contacts with rigid spherical probes of radii in the millimeter range. Poly(PEGMA) (poly(ethylene glycol)) methyl ether methacrylate), poly(DMA) (dimethylacrylamide) and poly(NIPAM) (\textit{N}-isopropylacrylamide) gel films with thickness less than 15 μ\mum were grafted onto glass substrates using a thiol-ene click chemistry route. Changes in the indentation depth under constant applied load were monitored over time as a function of the film thickness and the radius of curvature of the probe using an interferometric method. In addition, shear properties of the indented films were measured using a lateral contact method. In the case of poly(PEGMA) films, we show that poroelastic indentation behavior is adequately described within the framework of an approximate contact model derived within the limits of confined contact geometries. This model provides simple scaling laws for the characteristic poroelastic time and the equilibrium indentation depth. Conversely, deviations from this model are evidenced for poly(DMA) and poly(NIPAM) films. From lateral contact experiments, these deviations are found to result from strong changes in the shear properties as a result of glass transition (poly(DMA)) or phase separation (poly(NIPAM)) phenomena induced by the drainage of the confined films squeezed between the rigid substrates

    Time-resolved temperature rise in a thin liquid film due to laser absorption

    Get PDF
    International audienceThe temperature increase of a thin water layer is investigated, both experimentally and numerically, when the layer is heated by an infrared laser. The laser is focused to a waist of 5.3 µm inside a 28 µm gap that contains fluorescent aqueous solutions between two glass slides. Temperature fields are measured using the temperature sensitivity of rhodamine-B, while correcting for thermal diffusion using rhodamine-101, which is insensitive to temperature. In the steady state, the shape of the hot region is well fitted with a Lorentzian function whose width ranges between 15 and 30 µm, increasing with laser power. At the same time, the maximum temperature rise ranges between 10 and 55 °C and can display a decrease at high laser powers. The total energy stored in the sample increases linearly with the laser power. The dynamics of the heating occurs with two distinct time scales: (i) a fast time (tT =4.2 ms in our case) which is the time taken to reach the maximum temperature at the laser position and the maximum temperature gradient, and (ii) a slow time scale for the spatial profile to reach its final width. The temperature field obtained numerically agrees quantitatively with the experiments for low laser powers but overpredicts the temperature rise while underpredicting the profile width for high powers. The total energy shows good agreement between experiments and simulations for all laser powers, suggesting that the discrepancies are due to a broadening of the laser, possibly due to a thermal lensing effect. © 2009 The American Physical Society

    Centrifugal Compression of Soft Particle Packings: Theory and Experiment

    Get PDF
    An exact method is developed for computing the height of an elastic medium subjected to centrifugal compression, for arbitrary constitutive relation between stress and strain. Example solutions are obtained for power-law media and for cases where the stress diverges at a critical strain—for example as required by packings composed of deformable but incompressible particles. Experimental data are presented for the centrifugal compression of thermo-responsive N-isopropylacrylamide (NIPA) microgel beads in water. For small radial acceleration, the results are consistent with Hertzian elasticity, and are analyzed in terms of the Young elastic modulus of the bead material. For large radial acceleration, the sample compression asymptotes to a value corresponding to a space-filling particle volume fraction of unity. Therefore we conclude that the gel beads are incompressible, and deform without deswelling. In addition, we find that the Young elastic modulus of the particulate gel material scales with cross-link density raised to the power 3.3±0.8, somewhat larger than the Flory expectation

    Morphology and dynamics of dense nanometric precursor lms of polymer melts

    Full text link
    Nanometer-thick supported lms of polymer melts spontaneously form and spread around sessile droplets that are deposited on oxidized silicon wafers. At steady state, the lms become dense and adopt a uniform thickness which is equal to twice the gyration radius of the free polymer. Remarkably, this law applies to a wide variety of melts and does not depend on the polymer chemistry nor on the surface state (oxide layer thickness, temperature, presence of water adsorbed, etc.). We show that existing theoretical descriptions cannot reproduce this experimental result. Conversely, the evolution toward this equilibrium state witnesses the specicity of the interactions at stake in these conned polymer lms. The chains spreading dynamics can be modeled by taking into account both the polymer/surface friction and the polymer/polymer friction.Comment: Macromolecules, inPres

    Ecoulements et adhésion (rôle des microstructurations)

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Laser-induced force on a microfluidic drop: Origin and magnitude

    No full text
    International audienceThe localized heating produced by a tightly focused infrared laser leads to surface tension gradients at the interface of microfluidic drops covered with surfactants, resulting in a net force on the drop whose origin and magnitude are the focus of this paper. First, by colocalization of the surfactant micelles with a fluorescent dye, we demonstrate that the heating alters their spatial distribution, driving the interface out of equilibrium. This soluto- capillary effect opposes and overcomes the purely thermal dependence of the surface tension, leading to reversed interfacial flows. As the surface of the drop is set into motion, recirculation rolls are created outside and inside the drop, which we measure using time-resolved micro-Particle Image Velocimetry. Second, the net force produced on the drop is measured using an original microfluidic design. For a drop 300 µm-long and 100 µm-wide, we obtain a force of 180 nN for a laser power of 100 mW. This micro-dynanometer further shows that the magnitude of the heating, which is determined by the laser power and its absorption in the water, sets the magnitude of the net force on the drop. On the other hand, the dynamics of the force generation is limited by the time scale for heating, which has independently been measured to be t? = 4 ms. This time scale sets the maximum velocity that the drops can have and still be blocked, by requiring that the interface passes the laser spot in a time longer than t?. The maximum velocity is measured at Umax = 0.7 mm/s for our geometric conditions. Finally, a scaling model is derived that describes the blocking force in a confined geometry as the result of the viscous stresses produced by the shear between the drop and the lateral walls. © 2009 American Chemical Society

    Surface fluctuations of liquids confined on flat and patterned solid substrates

    No full text
    International audienceWe report experimental measurements of the surface fluctuations of micron-thick oil films spread onto a solid substrate. We use a recently developed optical technique based on the measurement of the deflection of a laser beam triggered by changes in the local surface slope. When the liquid is spread on a flat substrate, fluctuation dynamics slow down as the thickness is decreased, in quantitative agreement with previous predictions. In addition, we investigate the consequences on surface fluctuations of the patterning of the substrate with a rectangular grating. For liquid film thicknesses smaller than the typical wavelength probed, we demonstrate that surface fluctuations are modified by the underlying pattern: The shape of the fluctuation spectra varies periodically with the spatial position over the pattern and, in addition, the fluctuations become locally anisotropic. However, the spatially averaged spectrum is isotropic

    Wetting of polymers by their solvents

    No full text
    International audienceWe review the studies on the wetting of soluble polymeric substrates by their solvents, both in the literature and conducted in our group in the past decade. When a droplet of solvent spreads on a soluble polymer layer, its wetting angle can strongly vary with the contact line velocity even at capillary numbers smaller than unity, in contrast to non-soluble substrates. The solvent content in the polymer is a key parameter for the spreading dynamics; that content is set by the initial conditions, but also by the transfers occurring from the droplet to the polymer layer during spreading. We focus on hydrophilic amorphous polymers that are glassy at room temperature, and we discuss the consequences on wetting of the very large changes in the polymer physical properties induced by solvent sorption. We finally present new results on polymers of varying molar masses, and show how they open new perspectives for a better understanding of powder dissolution
    corecore