11 research outputs found

    Targeted erythropoietin selectively stimulates red blood cell expansion in vivo

    No full text
    The design of cell-targeted protein therapeutics can be informed by natural protein–protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics.Wyss Institute for Biologically Inspired Engineering (Pilot Award 112475)United States. Defense Advanced Research Projects Agency (Grant W911NF- 11-2-0056)National Institutes of Health (U.S.) (Grant R01 GM036373

    Rational engineering of an erythropoietin fusion protein to treat hypoxia

    No full text
    Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10−14 M, allowing an estimate of the number of receptor–ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia

    Practical Murine Hematopathology: A Comparative Review and Implications for Research

    No full text
    Hematologic parameters are important markers of disease in human and veterinary medicine. Biomedical research has benefited from mouse models that recapitulate such disease, thus expanding knowledge of pathogenetic mechanisms and investigative therapies that translate across species. Mice in health have many notable hematologic differences from humans and other veterinary species, including smaller erythrocytes, higher percentage of circulating reticulocytes or polychromasia, lower peripheral blood neutrophil and higher peripheral blood and bone marrow lymphocyte percentages, variable leukocyte morphologies, physiologic splenic hematopoiesis and iron storage, and more numerous and shorter-lived erythrocytes and platelets. For accurate and complete hematologic analyses of disease and response to investigative therapeutic interventions, these differences and the unique features of murine hematopathology must be understood. Here we review murine hematology and hematopathology for practical application to translational investigation

    Portable, on-demand biomolecular manufacturing

    No full text
    Synthetic biology uses living cells as molecular foundries for the biosynthesis of drugs, therapeutic proteins, and other commodities. However, the need for specialized equipment and refrigeration for production and distribution poses a challenge for the delivery of these technologies to the field and to low-resource areas. Here, we present a portable platform that provides the means for on-site, on-demand manufacturing of therapeutics and biomolecules. This flexible system is based on reaction pellets composed of freeze-dried, cell-free transcription and translation machinery, which can be easily hydrated and utilized for biosynthesis through the addition of DNA encoding the desired output. We demonstrate this approach with the manufacture and functional validation of antimicrobial peptides and vaccines and present combinatorial methods for the production of antibody conjugates and small molecules. This synthetic biology platform resolves important practical limitations in the production and distribution of therapeutics and molecular tools, both to the developed and developing world.1158Nsciescopu

    Portable, On-Demand Biomolecular Manufacturing

    No full text
    Synthetic biology uses living cells as molecular foundries for the biosynthesis of drugs, therapeutic proteins, and other commodities. However, the need for specialized equipment and refrigeration for production and distribution poses a challenge for the delivery of these technologies to the field and to low-resource areas. Here, we present a portable platform that provides the means for on-site, on-demand manufacturing of therapeutics and biomolecules. This flexible system is based on reaction pellets composed of freeze-dried, cell-free transcription and translation machinery, which can be easily hydrated and utilized for biosynthesis through the addition of DNA encoding the desired output. We demonstrate this approach with the manufacture and functional validation of antimicrobial peptides and vaccines and present combinatorial methods for the production of antibody conjugates and small molecules. This synthetic biology platform resolves important practical limitations in the production and distribution of therapeutics and molecular tools, both to the developed and developing world.Defense Threat Reduction Agency (DTRA) (Grant HDTRA1-14-1-0006

    Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models

    No full text
    Platelets are crucial for normal hemostasis; however, their hyperactivation also contributes to many potentially lethal pathologies including myocardial infarction, stroke, and cancer. We hypothesized that modified platelets lacking their aggregation and activation capacity could act as reversible inhibitors of platelet activation cascades. Here, we describe the development of detergent-extracted human modified platelets (platelet decoys) that retained platelet binding functions but were incapable of functional activation and aggregation. Platelet decoys inhibited aggregation and adhesion of platelets on thrombogenic surfaces in vitro, which could be immediately reversed by the addition of normal platelets; in vivo in a rabbit model, pretreatment with platelet decoys inhibited arterial injury-induced thromboembolism. Decoys also interfered with platelet-mediated human breast cancer cell aggregation, and their presence decreased cancer cell arrest and extravasation in a microfluidic human microvasculature on a chip. In a mouse model of metastasis, simultaneous injection of the platelet decoys with tumor cells inhibited metastatic tumor growth. Thus, our results suggest that platelet decoys might represent an effective strategy for obtaining antithrombotic and antimetastatic effects
    corecore