120 research outputs found

    Toxoplasma MIC2 Is a Major Determinant of Invasion and Virulence

    Get PDF
    Like its apicomplexan kin, the obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and uses a unique form of gliding motility. The recent identification of several transmembrane adhesive complexes, potentially capable of gripping external receptors and the sub-membrane actinomyosin motor, suggests that the parasite has multiple options for host-cell recognition and invasion. To test whether the transmembrane adhesin MIC2, together with its partner protein M2AP, participates in a major invasion pathway, we utilized a conditional expression system to introduce an anhydrotetracycline-responsive mic2 construct, allowing us to then knockout the endogenous mic2 gene. Conditional suppression of MIC2 provided the first opportunity to directly determine the role of this protein in infection. Reduced MIC2 expression resulted in mistrafficking of M2AP, markedly defective host-cell attachment and invasion, the loss of helical gliding motility, and the inability to support lethal infection in a murine model of acute toxoplasmosis. Survival of mice infected with MIC2-deficient parasites correlated with lower parasite burden in infected tissues, an attenuated inflammatory immune response, and induction of long-term protective immunity. Our findings demonstrate that the MIC2 protein complex is a major virulence determinant for Toxoplasma infection and that MIC2-deficient parasites constitute an effective live-attenuated vaccine for experimental toxoplasmosis

    New roles for perforins and proteases in apicomplexan egress

    Full text link
    Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75116/1/j.1462-5822.2009.01357.x.pd

    Characterization of the chloroquine resistance transporter homologue in Toxoplasma gondii

    Get PDF
    Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antima-larial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chlo-roquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites

    Cell cycle-dependent, intercellular transmission of Toxoplasma gondii is accompanied by marked changes in parasite gene expression

    Full text link
    Intracellular microbes have evolved efficient strategies for transitioning from one cell to another in a process termed intercellular transmission. Here we show that host cell transmission of the obligate intracellular parasite Toxoplasma gondii is closely tied to specific cell cycle distributions, with egress and reinvasion occurring most proficiently by parasites in the G1 phase. We also reveal that Toxoplasma undergoes marked changes in mRNA expression when transitioning from the extracellular environment to its intracellular niche. These mRNA level changes reflect a modal switch from expression of proteins involved in invasion, motility and signal transduction in extracellular parasites to expression of metabolic and DNA replication proteins in intracellular parasites. Host cell binding and signalling associated with the discharge of parasite secretory proteins was not sufficient to induce this switch in gene expression, suggesting that the regulatory mechanisms responsible are tied to the establishment of the intracellular environment. The genes whose expression increased after parasite invasion belong to a progressive cascade known to underlie the parasite division cycle indicating that the unique relationship between the G1 phase and invasion effectively synchronizes short-term population growth. This work provides new insight into how this highly successful parasite competently transits from cell to cell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79311/1/MMI_7441_sm_FigS1-2_TableS6-8.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79311/2/j.1365-2958.2010.07441.x.pd

    Targeted Disruption of Toxoplasma gondii Serine Protease Inhibitor 1 Increases Bradyzoite Cyst Formation In Vitro and Parasite Tissue Burden in Mice

    Get PDF
    As an intracellular protozoan parasite, Toxoplasma gondii is likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities. T. gondii serine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces two TgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigate TgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles with Dolichos biflorus lectin under conditions promoting in vitro differentiation. The differentiation phenotype can be partially complemented by either TgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∌3-fold-increased parasite burden in the spleen and liver, and this in vivo phenotype is also complemented by either TgPI1 isoform. These results demonstrate that TgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases

    Intersection of endocytic and exocytic systems in Toxoplasma gondii

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143628/1/tra12556.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143628/2/tra12556-sup-0001-EditorialProcess.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143628/3/tra12556_am.pd

    Phosphorylation of toxoplasma gondii secreted proteins during acute and chronic stages of infection

    Get PDF
    ABSTRACT The intracellular parasite Toxoplasma gondii resides within a membrane-bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma secretes kinases and that numerous proteins are phosphorylated after secretion. Here, we assess the role of the phosphorylation of strand-forming protein 1 (SFP1) and the related protein GRA29, two secreted proteins with unknown function. We show that both proteins form stranded structures in the PV that are independent of the previously described intravacuolar network or actin. SFP1 and GRA29 can each form these structures independently of other Toxoplasma secreted proteins, although GRA29 appears to regulate SFP1 strands. We show that an unstructured region at the C termini of SFP1 and GRA29 is required for the formation of strands and that mimicking the phosphorylation of this domain of SFP1 negatively regulates strand development. When tachyzoites convert to chronic-stage bradyzoites, both proteins show a dispersed localization throughout the cyst matrix. Many secreted proteins are reported to dynamically redistribute as the cyst forms, and secreted kinases are known to play a role in cyst formation. Using quantitative phosphoproteome and proteome analyses comparing tachyzoite and early bradyzoite stages, we reveal widespread differential phosphorylation of secreted proteins. While we found no direct evidence for phosphorylation playing a dominant role for SFP1/GRA29 redistribution in the cyst, these data support a model in which secreted kinases and phosphatases contribute to the regulation of secreted proteins during stage conversion. IMPORTANCE Toxoplasma gondii is a common parasite that infects up to one-third of the human population. Initially, the parasite grows rapidly, infecting and destroying cells of the host, but subsequently switches to a slow-growing form and establishes chronic infection. In both stages, the parasite lives within a membrane-bound vacuole within the host cell, but in the chronic stage, a durable cyst wall is synthesized, which provides protection to the parasite during transmission to a new host. Toxoplasma secretes proteins into the vacuole to build its replicative niche, and previous studies identified many of these proteins as phosphorylated. We investigate two secreted proteins and show that a phosphorylated region plays an important role in their regulation in acute stages. We also observed widespread phosphorylation of secreted proteins when parasites convert from acute to chronic stages, providing new insight into how the cyst wall may be dynamically regulated

    A vacuolar‐ H + ‐pyrophosphatase ( TgVP 1) is required for microneme secretion, host cell invasion, and extracellular survival of T oxoplasma gondii

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108334/1/mmi12685.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/108334/2/mmi12685-sup-0001-si.pd

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles
    • 

    corecore