40 research outputs found

    Quantifying unpredictability: A multiple-model approach based on satellite imagery data from Mediterranean ponds.

    Get PDF
    Fluctuations in environmental parameters are increasingly being recognized as essential features of any habitat. The quantification of whether environmental fluctuations are prevalently predictable or unpredictable is remarkably relevant to understanding the evolutionary responses of organisms. However, when characterizing the relevant features of natural habitats, ecologists typically face two problems: (1) gathering long-term data and (2) handling the hard-won data. This paper takes advantage of the free access to long-term recordings of remote sensing data (27 years, Landsat TM/ETM+) to assess a set of environmental models for estimating environmental predictability. The case study included 20 Mediterranean saline ponds and lakes, and the focal variable was the water-surface area. This study first aimed to produce a method for accurately estimating the water-surface area from satellite images. Saline ponds can develop salt-crusted areas that make it difficult to distinguish between soil and water. This challenge was addressed using a novel pipeline that combines band ratio water indices and the short near-infrared band as a salt filter. The study then extracted the predictable and unpredictable components of variation in the water-surface area. Two different approaches, each showing variations in the parameters, were used to obtain the stochastic variation around a regular pattern with the objective of dissecting the effect of assumptions on predictability estimations. The first approach, which is based on Colwell's predictability metrics, transforms the focal variable into a nominal one. The resulting discrete categories define the relevant variations in the water-surface area. In the second approach, we introduced General Additive Model (GAM) fitting as a new metric for quantifying predictability. Both approaches produced a wide range of predictability for the studied ponds. Some model assumptions-which are considered very different a priori-had minor effects, whereas others produced predictability estimations that showed some degree of divergence. We hypothesize that these diverging estimations of predictability reflect the effect of fluctuations on different types of organisms. The fluctuation analysis described in this manuscript is applicable to a wide variety of systems, including both aquatic and nonaquatic systems, and will be valuable for quantifying and characterizing predictability, which is essential within the expected global increase in the unpredictability of environmental fluctuations. We advocate that a priori information for organisms of interest should be used to select the most suitable metrics estimating predictability, and we provide some guidelines for this approach

    Amazon forests maintain consistent canopy structure and greenness during the dry season

    Get PDF
    The seasonality of sunlight and rainfall regulates net primary production in tropical forests1. Previous studies have suggested that light is more limiting than water for tropical forest productivity2, consistent with greening of Amazon forests during the dry season in satellite data3,4,5,6,7. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area5,6,7 or leaf reflectance3,4,6, using a sophisticated radiative transfer model8 and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability
    corecore