23 research outputs found

    AGU hydrology days 2006

    No full text
    2006 annual AGU hydrology days was held at Colorado State University on March 20 - March 22, 2006.Includes bibliographical references.At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone be-tween two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Feā° concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Feā° amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years

    AGU hydrology days 2006

    No full text
    2006 annual AGU hydrology days was held at Colorado State University on March 20 - March 22, 2006.Includes bibliographical references.An intermediate-scale experiment was conducted to investigate the behavior of a viscous LNAPL under variable water table conditions. Two LNAPL volumes were released from a small source zone on top of the flow cell into a partly saturated, homogenously packed porous medium. Following a 30-day redistribution period, the water table was increased 0.5 m in 50 minutes. After the water table rise, LNAPL behavior was monitored for an additional 45 days. Fluid saturation scans were obtained periodically with a fully automated dual-energy gamma radiation system. Results show that both spills follow similar paths downwards. LNAPL drainage from the unsaturated zone was relatively slow and a considerable residual LNAPL saturation was observed after 30 days of drainage. Most of the mobile LNAPL moved into the capillary fringe during this period. After the water table rise, LNAPL moved up in a delayed fashion. After 45 days, the LNAPL has moved up only ap-proximately 0.2 m. Since the LNAPL has only moved up a limited amount, nonwetting fluid entrapment was also limited. The experiment was simulated using the STOMP multifluid flow simulator. A comparison indicates that the simulator is able to predict the observed phenomena well, including residual saturation formation in the vadose zone, and limited upward LNAPL movement after the water table rise. The results of this experiment show that viscous mobile LNAPL, subject to variable water table conditions, does not necessarily float on the water table and may not appear in an observation well
    corecore