98 research outputs found

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)

    3D finite compartment modeling of formation and healing of bruises may identify methods for age determination of bruises

    Get PDF
    Simulating the spatial and temporal behavior of bruises may identify methods that allow accurate age determination of bruises to assess child abuse. We developed a numerical 3D model to simulate the spatial kinetics of hemoglobin and bilirubin during the formation and healing of bruises. Using this model, we studied how skin thickness, bruise diameter and diffusivities affect the formation and healing of circular symmetric bruises and compared a simulated bruise with a natural inhomogeneous bruise. Healing is faster for smaller bruises in thinner and less dense skin. The simulated and natural bruises showed similar spatial and temporal dynamics. The different spatio-temporal dynamics of hemoglobin and bilirubin allows age determination of model bruises. Combining our model predictions with individual natural bruises may allow optimizing our model parameters. It may particularly identify methods for more accurate age determination than currently possible to aid the assessment of child abuse

    Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    Get PDF
    Background: In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to methemoglobin (met-Hb) and hemichrome (HC). The fractions of HbO 2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates. Methodology: The fractions of HbO2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450–800 nm), were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach. Conclusions: The oxidation rate of HbO2 in bloodstains is biphasic. At first, the oxidation of HbO2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene

    Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus

    Get PDF
    Remote photoplethysmography (rPPG) allows contactless monitoring of human cardiac activity through a video camera. In this study, we assessed the accuracy and precision for heart rate measurements of the only consumer product available on the market, namely the Facereader™ rPPG by Noldus, with respect to a gold standard electrocardiograph. Twenty-four healthy participants were asked to sit in front of a computer screen and alternate two periods of rest with two stress tests (i.e. Go/No-Go task), while their heart rate was simultaneously acquired for 20 minutes using the ECG criterion measure and the Facereader™ rPPG. Results show that the Facereader™ rPPG tends to overestimate lower heart rates and underestimate higher heart rates compared to the ECG. The Facereader™ rPPG revealed a mean bias of 9.8 bpm, the 95% limits of agreement (LoA) ranged from almost -30 up to +50 bpm. These results suggest that whilst the rPPG Facereader™ technology has potential for contactless heart rate monitoring, its predictions are inaccurate for higher heart rates, with unacceptable precision across the entire range, rendering its estimates unreliable for monitoring individuals
    corecore