348 research outputs found

    IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts

    Get PDF
    Herpetic stromal keratitis (HSK) is an immunopathologic disease triggered by infection of the cornea with HSV. Key events in HSK involve the interaction between cornea-infiltrating inflammatory cells and resident cells. This interaction, in which macrophages, producing IL-1 and TNF-alpha, and IFN-gamma-producing Th1 cells play a crucial role, results in the local secretion of immune-modulatory factors and a major influx of neutrophils causing corneal lesions and blindness. The Th1-derived cytokine IL-17 has been shown to play an important role in several inflammatory diseases characterized by a massive infiltration of neutrophils into inflamed tissue. Here we show that IL-17 is expressed in corneas from patients with HSK and that the IL-17R is constitutively expressed by human corneal fibroblasts (HCF). IL-17 exhibited a strong synergistic effect with TNF-alpha on the induction of IL-6 and IL-8 secretion by cultured HCF. Secreted IL-8 in these cultures had a strong chemotactic effect on neutrophils. IL-17 also enhanced TNF-alpha- and IFN-gamma-induced secretion of macrophage-inflammatory proteins 1alpha and 3alpha, while inhibiting the induced secretion of RANTES. Furthermore, considerable levels of IFN-gamma-inducible protein 10 and matrix metalloproteinase 1 were measured in stimulated HCF cultures, while the constitutive secretion of monocyte chemotactic protein 1 remained unaffected. The data presented suggest that IL-17 may play an important role in the induction and/or perpetuation of the immunopathologic processes in human HSK by modulating the secretion of proinflammatory and neutrophil chemotactic factors by corneal resident fibroblast

    Corneal herpes simplex virus type 1 superinfection in patients with recrudescent herpetic keratitis

    Get PDF
    PURPOSE: Herpetic keratitis is a common sequel of a corneal infection with herpes simplex virus (HSV)-1. Recrudescent herpetic keratitis (RHK) may result in irreversible damage to the cornea. Recurrences may be caused by reactivation of endogenous HSV-1 or reinfection with exogenous HSV-1. The objective of this study was to determine the incidence and risk factors involved of HSV-1 superinfection in patients with RHK. METHODS: From 30 patients with RHK, sequential corneal HSV-1 isolates were genotyped by PCR amplification of the hypervariable regions located within the HSV-1 genes US1, US10/11, and US12. The clinical data from the patients obtained retrospectively were: ophthalmologic history, clinical picture during recurrences, number and time points of penetrating keratoplasty (PKP), and steroid or acyclovir treatment. RESULTS: Whereas the sequential corneal HSV-1 isolates of 19 (63%) of 30 patients had the same genotype (designated as group 1), the sequential isolates of 11 patients (37%) were genetically different (designated as group 2). Among the clinical data analyzed, only the time point of PKP was significantly different between the patient groups. A

    Chlamydia trachomatis Biovar L2 Infection in Women in South Africa

    Get PDF
    We detected Chlamydia trachomatis biovar L2 in vaginal swab specimens of 7 women with vaginal discharge in South Africa. Whole-genome sequencing directly from clinical specimens identified a closely related cluster of strains. The clinical role of this infection in the context of syndromic management should be clarified

    Chlamydia trachomatis Biovar L2 Infection in Women in South Africa

    Get PDF

    Intracellular processing and presentation of T cell epitopes, expressed by recombinant Escherichia coli and Salmonella typhimurium, to human T cells

    Get PDF
    Vaccines based on recombinant attenuated bacteria represent a potentially safe and effective immunization strategy. A carrier system was developed to analyze in vitro whether foreign T cell epitopes, inserted in the outer membrane protein PhoE of Escherichia coli and expressed by recombinant bacteria, are efficiently processed and presente

    Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging

    Get PDF
    Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT–NIRF systems acquire data at a very high frame-rate (>100 frames/s), a high number of images per pullback need to be analyzed, making manual processing of OCT–NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT–NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from six New Zealand White rabbit atherosclerotic after indocyanine-green injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 µm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from eight different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT–NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall.National Institutes of Health (U.S.) (NIH R01HL093717)Merck & Co., Inc
    • …
    corecore