193 research outputs found

    Chlamydia trachomatis Biovar L2 Infection in Women in South Africa

    Get PDF
    We detected Chlamydia trachomatis biovar L2 in vaginal swab specimens of 7 women with vaginal discharge in South Africa. Whole-genome sequencing directly from clinical specimens identified a closely related cluster of strains. The clinical role of this infection in the context of syndromic management should be clarified

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle

    ER stress induces caspase-2-tBID-GSDME-dependent cell death in neurons lytically infected with herpes simplex virus type 2

    Get PDF
    Neurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV-induced neuronal cell death remain enigmatic. Here, we report that lytic HSV-2 infection of human neuron-like SH-SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV-2-induced GSDME-mediated cell death occurs downstream of replication-induced endoplasmic reticulum stress driven by inositol-requiring kinase 1α (IRE1α), leading to activation of caspase-2, cleavage of the pro-apoptotic protein BH3-interacting domain death agonist (BID), and mitochondria-dependent activation of caspase-3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC-derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress-driven pathway to execute GSDME-mediated cell death and promote inflammation.</p

    Local CD4 and CD8 T-Cell Reactivity to HSV-1 Antigens Documents Broad Viral Protein Expression and Immune Competence in Latently Infected Human Trigeminal Ganglia

    Get PDF
    Herpes simplex virus type 1 (HSV-1) infection results in lifelong chronic infection of trigeminal ganglion (TG) neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates

    Macrophage Depletion in Hypertensive Rats Accelerates Development of Cardiomyopathy

    Get PDF
    Inflammation contributes to the process of ventricular remodeling after acute myocardial injury. To investigate the role of macrophages in the chronic process of cardiac remodeling, they were selectively depleted by intravenous administration of liposomal clodronate in heart failure-prone hypertensive Ren-2 rats from the age of 7 until 13 weeks. plain liposomes were used for comparison. Liposomal clodronate treatment reduced the number of blood monocytes and decreased the number of macrophages in the myocardium. Compared to plain liposomes, liposomal clodronate treatment rapidly worsened left ventricular ejection function in hypertensive rats. Liposomal clodronate-treated Ren-2 rat hearts showed areas of myocyte loss with abundant inflammatory cell infiltration, predominantly comprising CD4 positive T lymphocytes. The current-study showed that lack of macrophages vas associated with earlier development of myocardial dysfunction in hypertensive rats. Modulation of macrophage function may be of value in the evolution of cardiomyopath

    Chlamydia trachomatis biovar L2 infection in women in South Africa

    Get PDF
    We detected Chlamydia trachomatis biovar L2 in vaginal swab specimens of 7 women with vaginal discharge in South Africa. Whole-genome sequencing directly from clinical specimens identified a closely related cluster of strains. The clinical role of this infection in the context of syndromic management should be clarified

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZ

    Coronary Atherosclerotic Plaque Activity and Future Coronary Events

    Get PDF
    This study was funded by a Wellcome Trust Senior Investigator Award (WT103782AIA). Image analysis was supported by National Institutes for Health (R34HL161195 and 1R01HL135557). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Wellcome Trust or the National Institutes of Health. The British Heart Foundation supports DEN (CH/09/002, RG/16/10/32375, RE/18/5/34216), MRD (FS/SCRF/21/32010), NLM (CH/F/21/90010, RG/20/10/34966, RE/18/5/34216) AJM (AA/18/3/34220) and MCW (FS/ICRF/20/26002) and DD (FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, PG/15/88/31780, PG/17/64/33205). MRD is the recipient of the Sir Jules Thorn Award for Biomedical Research 2015 (15/JTA). PJS is supported by outstanding investigator award National Institutes for Health (R35HL161195). JK is supported by the National Science Centre 2021/41/B/NZ5/02630. EvB is supported by SINAPSE (www.sinapse.ac.uk). AB is supported by a Clinical Research Training Fellowships (MR/V007254/1). DD is supported by Chest Heart and Stroke Scotland (19/53), Tenovus Scotland (G.18.01), and Friends of Anchor and Grampian NHS-Endowments. The Edinburgh Clinical Research Facilities, Edinburgh Imaging facility and Edinburgh Clinical Trials Unit are supported by the National Health Service Research Scotland through National Health Service Lothian Health Board. The Leeds Clinical Research Facilities are supported by the UK National Institute for Health Research (NIHR) via its Clinical Research Facility programme. The work at Cedars-Sinai Medical Center (the Los Angeles site) was supported in part by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. The Chief Investigator and Edinburgh Clinical Trials Unit had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.Peer reviewedPostprin
    corecore