5 research outputs found
Influence of Gelatin Source and Bloom Number on Gelatin Methacryloyl Hydrogels Mechanical and Biological Properties for Muscle Regeneration
Approximately half of an adult human’s body weight is made up of muscles. Thus, restoring the functionality and aesthetics of lost muscle tissue is critical. The body is usually able to repair minor muscle injuries. However, when volumetric muscle loss occurs due to tumour extraction, for instance, the body will form fibrous tissue instead. Gelatin methacryloyl (GelMA) hydrogels have been applied for drug delivery, tissue adhesive, and various tissue engineering applications due to their tuneable mechanical properties. Here, we have synthesised GelMA from different gelatin sources (i.e., porcine, bovine, and fish) with varying bloom numbers, which refers to the gel strength, and investigated for the influence of the source of gelatin and the bloom number on biological activities and mechanical properties. The results indicated that the source of the gelatin and variable bloom numbers have an impact on GelMA hydrogel properties. Furthermore, our findings established that the bovine-derived gelatin methacryloyl (B-GelMA) has better mechanical properties than the other varieties composed of porcine and fish with 60 kPa, 40 kPa, and 10 kPa in bovine, porcine, and fish, respectively. Additionally, it showed a noticeably greater swelling ratio (SR) ~1100% and a reduced rate of degradation, improving the stability of hydrogels and giving cells adequate time to divide and proliferate to compensate for muscle loss. Furthermore, the bloom number of gelatin was also proven to influence the mechanical properties of GelMA. Interestingly, although GelMA made of fish had the lowest mechanical strength and gel stability, it demonstrated excellent biological properties. Overall, the results emphasise the importance of gelatin source and bloom number, allowing GelMA hydrogels to have a wide range of mechanical and excellent biological properties and making them suitable for various muscle tissue regeneration applications
In Vivo Osteogenic and Angiogenic Properties of a 3D-Printed Isosorbide-Based Gyroid Scaffold Manufactured via Digital Light Processing
Introduction: Osteogenic and angiogenic properties of synthetic bone grafts play a crucial role in the restoration of bone defects. Angiogenesis is recognised for its support in bone regeneration, particularly in larger defects. The objective of this study is to evaluate the new bone formation and neovascularisation of a 3D-printed isosorbide-based novel CSMA-2 polymer in biomimetic gyroid structures. Methods: The gyroid scaffolds were fabricated by 3D printing CSMA-2 polymers with different hydroxyapatite (HA) filler concentrations using the digital light processing (DLP) method. A small animal subcutaneous model and a rat calvaria critical-size defect model were performed to analyse tissue compatibility, angiogenesis, and new bone formation. Results: The in vivo results showed good biocompatibility of the 3D-printed gyroid scaffolds with no visible prolonged inflammatory reaction. Blood vessels were found to infiltrate the pores from day 7 of the implantation. New bone formation was confirmed with positive MT staining and BMP-2 expression, particularly on scaffolds with 10% HA. Bone volume was significantly higher in the CSMA-2 10HA group compared to the sham control group. Discussion and Conclusions: The results of the subcutaneous model demonstrated a favourable tissue response, including angiogenesis and fibrous tissue, indicative of the early wound healing process. The results from the critical-size defect model showcased new bone formation, as confirmed by micro-CT imaging and immunohistochemistry. The combination of CSMA-2 as the 3D printing material and the gyroid as the 3D structure was found to support essential events in bone healing, specifically angiogenesis and osteogenesis
Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods allow the fabrication of biomimetic scaffolds with high resolution and mechanical properties that exceed the result of commonly used extrusion-based printing. Digital light processing (DLP) is known for its faster and more accurate printing than other 3D printing approaches. However, the development of biocompatible resins for light-based 3D printing is not as rapid as that of bio-inks for extrusion-based printing. In this study, we developed CSMA-2, a photopolymer based on Isosorbide, a renewable sugar derivative monomer. The CSMA-2 showed suitable rheological properties for DLP printing. Gyroid scaffolds with high resolution were successfully printed. The 3D-printed scaffolds also had a compressive modulus within the range of a human cancellous bone modulus. Human adipose-derived stem cells remained viable for up to 21 days of incubation on the scaffolds. A calcium deposition from the cells was also found on the scaffolds. The stem cells expressed osteogenic markers such as RUNX2, OCN, and OPN. These results indicated that the scaffolds supported the osteogenic differentiation of the progenitor cells. In summary, CSMA-2 is a promising material for 3D printing techniques with high resolution that allow the fabrication of complex biomimetic scaffolds for bone regeneration
<i>In Vivo</i> Osteogenic and Angiogenic Properties of a 3D-Printed Isosorbide-Based Gyroid Scaffold Manufactured via Digital Light Processing
Introduction: Osteogenic and angiogenic properties of synthetic bone grafts play a crucial role in the restoration of bone defects. Angiogenesis is recognised for its support in bone regeneration, particularly in larger defects. The objective of this study is to evaluate the new bone formation and neovascularisation of a 3D-printed isosorbide-based novel CSMA-2 polymer in biomimetic gyroid structures. Methods: The gyroid scaffolds were fabricated by 3D printing CSMA-2 polymers with different hydroxyapatite (HA) filler concentrations using the digital light processing (DLP) method. A small animal subcutaneous model and a rat calvaria critical-size defect model were performed to analyse tissue compatibility, angiogenesis, and new bone formation. Results: The in vivo results showed good biocompatibility of the 3D-printed gyroid scaffolds with no visible prolonged inflammatory reaction. Blood vessels were found to infiltrate the pores from day 7 of the implantation. New bone formation was confirmed with positive MT staining and BMP-2 expression, particularly on scaffolds with 10% HA. Bone volume was significantly higher in the CSMA-2 10HA group compared to the sham control group. Discussion and Conclusions: The results of the subcutaneous model demonstrated a favourable tissue response, including angiogenesis and fibrous tissue, indicative of the early wound healing process. The results from the critical-size defect model showcased new bone formation, as confirmed by micro-CT imaging and immunohistochemistry. The combination of CSMA-2 as the 3D printing material and the gyroid as the 3D structure was found to support essential events in bone healing, specifically angiogenesis and osteogenesis