1,426 research outputs found
Visualizing the logistic map with a microcontroller
The logistic map is one of the simplest nonlinear dynamical systems that
clearly exhibit the route to chaos. In this paper, we explored the evolution of
the logistic map using an open-source microcontroller connected to an array of
light emitting diodes (LEDs). We divided the one-dimensional interval
into ten equal parts, and associated and LED to each segment. Every time an
iteration took place a corresponding LED turned on indicating the value
returned by the logistic map. By changing some initial conditions of the
system, we observed the transition from order to chaos exhibited by the map.Comment: LaTeX, 6 pages, 3 figures, 1 listin
Population Dynamics in the Penna Model
We build upon the recent steady-state Penna model solution, Phys.Rev.Lett.
89, 288103 (2002), to study the population dynamics within the Penna model. We
show, that any perturbation to the population can be broken into a collection
of modes each of which decay exponentially with its respective time constant.
The long time behaviour of population is therefore likely to be dominated by
the modes with the largest time constants. We confirm our analytical approach
with simulation data.Comment: 6 figure
Extracellular Nucleotides Regulate Arterial Calcification by Activating Both Independent and Dependent Purinergic Receptor Signaling Pathways
Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5′-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor—pyrophosphate and the calcification stimulator—inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization
Analytical solution of a generalized Penna model
In 1995 T.J.Penna introduced a simple model of biological aging. A modified
Penna model has been demonstrated to exhibit behaviour of real-life systems
including catastrophic senescence in salmon and a mortality plateau at advanced
ages. We present a general steady-state, analytic solution to the Penna model,
able to deal with arbitrary birth and survivability functions. This solution is
employed to solve standard variant Penna models studied by simulation.
Different Verhulst factors regulating both the birth rate and external death
rate are considered.Comment: 6 figure
Validating secure and reliable IP/MPLS communications for current differential protection
Current differential protection has stringent real-time communications requirements and it is critical that protection traffic is transmitted securely, i.e., by using appropriate data authentication and encryption methods. This paper demonstrates that real-time encryption of protection traffic in IP/MPLS-based communications networks is possible with negligible impact on performance and system operation. It is also shown how the impact of jitter and asymmetrical delay in real communications networks can be eliminated. These results will provide confidence to power utilities that modern IP/MPLS infrastructure can securely and reliably cater for even the most demanding applications
Stability of Naked Singularity arising in gravitational collapse of Type I matter fields
Considering gravitational collapse of Type I matter fields, we prove that,
given an arbitrary - mass function and a -
function (through the corresponding - metric function
), there exist infinitely many choices of energy distribution
function such that the `true' initial data () leads
the collapse to the formation of naked singularity. We further prove that the
occurrence of such a naked singularity is stable with respect to small changes
in the initial data. We remark that though the initial data leading to both
black hole and naked singularity form a "big" subset of the true initial data
set, their occurrence is not generic. The terms `stability' and `genericity'
are appropriately defined following the theory of dynamical systems. The
particular case of radial pressure has been illustrated in details
to get clear picture of how naked singularity is formed and how, it is stable
with respect to initial data.Comment: 16 pages, no figure, Latex, submitted to Praman
Effects of early-life conditions on innate immune function in adult zebra finches
Early life conditions can affect individuals for life, with harsh developmental conditions resulting in lower fitness, but the underlying mechanisms are not well understood. We hypothesized that immune function may be part of the underlying mechanism, when harsh developmental conditions result in less effective immune function. We tested this hypothesis by comparing innate immune function between zebra finches (Taeniopygia guttata) in adulthood (n=230; age 108–749 days) that were reared in either small or large broods. We used this experimental background to follow up our earlier finding that finches reared in large broods have a shorter lifespan. To render a broad overview of innate immune function, we used an array of six measures: bacterial killing capacity, hemagglutination, hemolysis, haptoglobin, nitric oxide and ovotransferrin. We found no convincing evidence for effects of natal brood size on any of the six measures of innate immune function. This raised the question whether the origin of variation in immune function was genetic, and we therefore estimated heritabilities using animal models. However, we found heritability estimates to be low (range 0.04–0.11) for all measured immune variables, suggesting variation in innate immune function can largely be attributed to environmental effects independent of early-life conditions as modified by natal brood size
Why do earlier-arriving migratory birds have better breeding success?
In migratory birds, early arrival on breeding sites has been widely associated with greater breeding success, but the mechanisms driving these benefits are rarely known. Acquisition of higher quality territories or carry-over effects of better non-breeding season conditions are frequently cited as possible mechanisms through which early-arrivers can achieve greater reproductive output. However, benefits of early arrival could also result from increased time available for breeding, independent of variation in territory quality and associated fitness. Increased time available for breeding among early arrivers could directly influence reproductive success through the time available for replacement clutches following nest loss. However, the benefits of replacement clutches may also depend on seasonal variation in nest survival, and the consequences for juvenile recruitment of hatching at different times in the season. Here we construct a simulation model to explore the potential for time-constrained capacity for replacement clutches to drive relationships between timing of arrival and reproductive success in avian migratory systems, and the influence of seasonal variation in both nest survival and subsequent offspring recruitment probability on these relationships. We show that positive relationships between arrival timing and reproductive success can arise solely through the greater time capacity for replacement clutches among early-arrivers, even when juvenile recruitment declines seasonally and thus later re-nesting attempts contribute fewer recruits to the population. However, these relationships vary depending on the seasonal pattern of nest survival. The benefits of early arrival are greatest when nest survival rates are constant or decline seasonally, and early arrival is least beneficial when nest success rates increase over the breeding season, although re-nesting capacity can mitigate this effect. The time benefits of early arrival facilitating replacement clutches following nest loss may therefore be an important source of selection on migratory timings, and empirical measures of seasonal variation in nest survival, re-nesting and juvenile recruitment rates are needed in order to identify the costs and benefits associated with individual migration phenology and the selection pressures influencing migratory timings
Asymptotic solvers for ordinary differential equations with multiple frequencies
We construct asymptotic expansions for ordinary differential equations with highly oscillatory forcing terms, focusing on the case of multiple, non-commensurate frequencies. We derive an asymptotic expansion in inverse powers of the oscillatory parameter and use its truncation as an exceedingly effective means to discretize the differential equation in question. Numerical examples illustrate the effectiveness of the method
Effects of manipulated food availability and seasonality on innate immune function in a passerine
The innate immune system is essential for survival, yet many immune traits are highly variable between and within individuals. In recent years, attention has shifted to the role of environmental factors in modulating this variation. A key environmental factor is food availability, which plays a major role in shaping life histories, and may affect resource allocation to immune function through its effect on nutritional state. We developed a technique to permanently increase foraging costs in seed-eating birds, and leveraged this technique to study the effects of food availability on the innate immune system over a 3-year period in 230 zebra finches housed in outdoor aviaries. The immune components we studied were haptoglobin, ovotransferrin, nitric oxide, natural antibodies through agglutination, complement-mediated lysis, and killing capacity of Escherichia coli and Candida albicans, covering a broad spectrum of the innate immune system. We explored the effects of food availability in conjunction with other potentially important variables: season, age, sex and manipulated natal brood size. Increased foraging costs affected multiple components of the immune system, albeit in a variable way. Nitric oxide and agglutination levels were lower under harsh foraging conditions, while Escherichia coli killing capacity was increased. Agglutination levels also varied seasonally, but only at low foraging costs. C. albicans killing capacity was lower in winter, and even more so for animals in harsh foraging conditions that were raised in large broods. Effects of food availability on ovotransferrin were also seasonal, and only apparent in males. Haptoglobin levels were independent of foraging costs and season. Males had higher levels of immune function than females for three of the measured immune traits. Innate immune function was independent of age and manipulated natal brood size. Our finding that food availability affects innate immune function suggests that fitness effects of food availability may at least partially be mediated by effects on the immune system. However, food availability effects on innate immunity varied in direction between traits, illustrating the complexity of the immune system and precluding conclusions on the level of disease resistance
- …