117 research outputs found

    Do on-farm natural, restored, managed and constructed wetlands mitigate agricultural pollution in Great Britain and Ireland?

    Get PDF
    Wetlands in agricultural landscapes offer a number of benefits to the landscape function in which they are set, reducing nutrient runoff, providing additional habitat mosaics and offering various ecosystem services. They require careful planning and maintenance in order to perform their optimum design function over a prolonged period of time. They should be treated as functional units of farm infrastructure rather than fit-and-forget systems. A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of pollution from agriculture. This programme was set up to meet the requirements of the European Water Framework Directive (WFD) EU (2000). Nutrient loss from agricultural land has been suggested as a major cause of elevated nutrient concentrations in surface waters in the UK. Nitrogen (N) and phosphorus (P) are of particular concern as an excess of either nutrient can lead to eutrophication of freshwater systems and coastal waters. Agriculture has also been identified as a significant source of suspended sediment (SS) concentrations in UK rivers and agriculturally derived sediment has been identified as a source of increased bed-sediment P concentrations in rivers. High bed sediments loads have other negative impacts, such as clogging river gravels reducing fish spawning. There is considerable evidence in the published and grey literature that wetlands have the ability to remove nutrients and sediment and thus reduce the load on receiving waters. Wetlands have also been reported to perform other ecosystem services, such as reducing floods, supporting biodiversity and sequestering carbon. A policy to promote the conservation, management, restoration or construction of wetlands could help to mitigate the impacts of N, P and SS from agriculture delivering requirements of WFD through Catchment Sensitive Farming following an Ecosystem Approach and Catchment Based Approach promoted by Defra. It could also meet other commitments such as implementing the Ramsar and Biodiversity Conventions to which the UK is a signatory. However, the term wetlands covers a wide range of habitat types and it is important that policy makers are provided with accurate, robust and independently reviewed information on the degree to which different types of wetland perform these services under different circumstances, so that policy can most best targeted. This systematic review assesses the available evidence on the performance of various wetland types on farms to reduce nutrient input and suspended sediments to receiving waters. It provides a defensible evidence base on which to base policy. The studies reviewed cover different input loads and the analysis compares performance of these wetland systems in respect of % reduction efficiency. In England and Wales, Defra, working closely with the Environment Agency and Natural England, has commissioned this systematic review on how effective, and what influences the effectiveness of wetlands at mitigating N, P and SS inputs from agriculture to receiving freshwater in the United Kingdom and Ireland

    Litter mixture interactions at the level of plant functional types are additive.

    Get PDF
    It is very difficult to estimate litter decomposition rates in natural ecosystems because litters of many species are mixed and idiosyncratic interactions occur among those litters. A way to tackle this problem is to investigate litter mixing effects not at the species level but at the level of Plant Functional Types (PFTs). We tested the hypothesis that at the PFT level positive and negative interactions balance each other, causing an overall additive effect (no significant interactions among PFTs). Thereto, we used litter of four PFTs from a temperate peatland in which random draws were taken from the litter species pool of each PFT for every combination of 2, 3, and 4 PFTs. Decomposition rates clearly differed among the 4 PFTs (Sphagnum spp. < graminoids = N-fixing tree < forbs) and showed little variation within the PFTs (notably for the Sphagnum mosses and the graminoids). Significant positive interactions (4 out of 11) in the PFT mixtures were only found after 20 weeks and in all these combinations Sphagnum was involved. After 36 and 56 weeks of incubation interactions were not significantly different from zero. However, standard deviations were larger than the means, indicating that positive and negative interactions balanced each other. Thus, when litter mixture interactions are considered at the PFT level the interactions are additive. From this we conclude that for estimating litter decomposition rates at the ecosystem level, it is sufficient to use the weighted (by litter production) average decomposition rates of the contributing PFTs. © 2009 The Author(s)

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Selection of diazotrophic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater

    Get PDF
    Agri effluents such as winery or olive mill waste-waters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L−1 gallic acid and138 mg L−1 vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L−1) to 2,400mg L−1 gallic acid and 3,442 mg L−1 vanillin (5,842 mg COD L−1), on bacterialcommunities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.Web of Scienc

    Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO2 and N Deposition

    Get PDF
    In this study, we test whether the δ13C and δ15N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ13CO2 caused by increased fossil fuel combustion and changes in atmospheric δ15N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ13C and δ15N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ13CO2 and bulk peat δ13C, as well as between historically increasing wet N deposition and bulk peat δ15N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ13CO2 and the changes in δ15N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ15N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ15N from patterns caused by other processes
    • …
    corecore