2 research outputs found

    Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-Coated Polystyrene Cores-Assessment of the Binding Behavior to Cancer Cells

    Get PDF
    Simple Summary Cancer cells often have aberrant sialic acid expression. We used molecularly imprinted polymers in this study as novel tools for analyzing sialic acid expression as a biomarker on cancer cells. The sialic acid imprinted polymer shell was synthesized on a polystyrene core, providing low-density support for improving the suspension stability and scattering properties of the molecularly imprinted particles compared to previous core-shell formats. Our results show that these particles have an increased ability to bind to cancer cells. The binding of these particles may be inhibited by two different pentavalent sialic acid conjugates, pointing to the specificity of the sialic acid imprinted particles. Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the alpha 2,3- and alpha 2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, alpha 2,3-SA) and Sambucus Nigra Lectin (SNA, alpha 2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells.</p

    gamma-(S)-Guanidinylmethyl-Modified Triplex-Forming Peptide Nucleic Acids Increase Hoogsteen-Face Affinity for a MicroRNA and Enhance Cellular Uptake

    No full text
    gamma-Modified (i.e., (S)-aminomethyl, (S)-acetamidomethyl, (R)-4-(hydroxymethyl)triazol-1-ylmethyl, and (S)-guanidinylmethyl) triplex-forming peptide nucleic acids (TFPNAs) were synthesized and the effect of the backbone modifications on the binding to a miR-215 model was studied. Among the modifications, an appropriate pattern of three gamma-(S)-guanidinylmethyl modifications increased the affinity and Hoogsteen-face selectivity for the miR-215 model without ternary (PNA)(2)/RNA complex formation. Moreover, the gamma-(S)-guanidinylmethyl groups were observed to facilitate internalization of the TFPNAs into living PC-3 prostate cancer cells
    corecore