958 research outputs found
Using Lyman-alpha to detect galaxies that leak Lyman continuum
We propose to infer ionising continuum leaking properties of galaxies by
looking at their Lyman-alpha line profiles. We carry out Lyman-alpha radiation
transfer calculations in two models of HII regions which are porous to ionising
continuum escape: 1) the so-called "density bounded" media, in which massive
stars produce enough ionising photons to keep the surrounding interstellar
medium transparent to the ionising continuum, i.e almost totally ionised, and
2) "riddled ionisation-bounded" media, surrounded by neutral interstellar
medium, but with holes, i.e. with a covering factor lower than unity. The
Lyman-alpha spectra emergent from these configurations have distinctive
features: 1) a "classical" asymmetric redshifted profile in the first case, but
with a small shift of the maximum of the profile compare to the systemic
redshift (Vpeak < 150 km/s); 2) a main peak at the systemic redshift in the
second case (Vpeak = 0 km/s), with, as a consequence, a non-zero Lyman-alpha
flux bluewards the systemic redshift. Assuming that in a galaxy leaking
ionising photons, the Lyman-alpha component emerging from the leaking star
cluster(s) dominates the total Lyman-alpha spectrum, the Lyman-alpha shape may
be used as a pre-selection tool to detect Lyman continuum (LyC) leaking
galaxies, in objects with well determined systemic redshift, and high spectral
resolution Lyman-alpha spectra (R >= 4000). The examination of a sample of 10
local starbursts with high resolution HST-COS Lyman-alpha spectra and known in
the literature as LyC leakers or leaking candidates, corroborates our
predictions. Observations of Lyman-alpha profiles at high resolution should
show definite signatures revealing the escape of Lyman continuum photons from
star-forming galaxies.Comment: A&A in pres
Grid of Lya radiation transfer models for the interpretation of distant galaxies
Lya is a key diagnostic for numerous observations of distant star-forming
galaxies. It's interpretation requires, however, detailed radiation transfer
models. We provide an extensive grid of 3D radiation transfer models simulating
the Lya and UV continuum radiation transfer in the interstellar medium of
star-forming galaxies. We have improved our Monte Carlo MCLya code, and have
used it to compute a grid of 6240 radiation transfer models for homogeneous
spherical shells containing HI and dust surrounding a central source. The
simulations cover a wide range of parameter space. We present the detailed
predictions from our models including in particular the Lya escape fraction
fesc, the continuum attenuation, and detailed Lya line profiles. The Lya escape
fraction is shown to depend strongly on dust content, but also on other
parameters (HI column density and radial velocity). The predicted line profiles
show a great diversity of morphologies ranging from broad absorption lines to
emission lines with complex features. The results from our simulations are
distributed in electronic format. Our models should be of use for the
interpretation of observations from distant galaxies, for other simulations,
and should also serve as an important base for comparison for future, more
refined, radiation transfer models.Comment: Accepted for publication in Astronomy & Astrophysics. Results from
simulations available at http://obswww.unige.ch/sf
Accurately predicting the escape fraction of ionizing photons using restframe ultraviolet absorption lines
The fraction of ionizing photons that escape high-redshift galaxies
sensitively determines whether galaxies reionized the early universe. However,
this escape fraction cannot be measured from high-redshift galaxies because the
opacity of the intergalactic medium is large at high redshifts. Without methods
to indirectly measure the escape fraction of high-redshift galaxies, it is
unlikely that we will know what reionized the universe. Here, we analyze the
far-ultraviolet (UV) H I (Lyman series) and low-ionization metal absorption
lines of nine low-redshift, confirmed Lyman continuum emitting galaxies. We use
the H I covering fractions, column densities, and dust attenuations measured in
a companion paper to predict the escape fraction of ionizing photons. We find
good agreement between the predicted and observed Lyman continuum escape
fractions (within ) using both the H I and ISM absorption lines. The
ionizing photons escape through holes in the H I, but we show that dust
attenuation reduces the fraction of photons that escape galaxies. This means
that the average high-redshift galaxy likely emits more ionizing photons than
low-redshift galaxies. Two other indirect methods accurately predict the escape
fractions: the Ly escape fraction and the optical [O III]/[O II] flux
ratio. We use these indirect methods to predict the escape fraction of a sample
of 21 galaxies with rest-frame UV spectra but without Lyman continuum
observations. Many of these galaxies have low escape fractions (\%), but 11 have escape fractions \%. The methods presented here will
measure the escape fractions of high-redshift galaxies, enabling future
telescopes to determine whether star-forming galaxies reionized the early
universe.Comment: Accepted for publication in A&A. 12 pages, 5 figure
MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood
The radio-quiet quasar Q2059-360 at redshift is known to be close to
a small Lyman blob (LAB) and to be absorbed by a proximate damped
Ly (PDLA) system.
Here, we present the Multi Unit Spectroscopic Explorer (MUSE) integral field
spectroscopy follow-up of this quasi-stellar object (QSO). Our primary goal is
to characterize this LAB in detail by mapping it both spatially and spectrally
using the Ly line, and by looking for high-ionization lines to
constrain the emission mechanism.
Combining the high sensitivity of the MUSE integral field spectrograph
mounted on the Yepun telescope at ESO-VLT with the natural coronagraph provided
by the PDLA, we map the LAB down to the QSO position, after robust subtraction
of QSO light in the spectral domain.
In addition to confirming earlier results for the small bright component of
the LAB, we unveil a faint filamentary emission protruding to the south over
about 80 pkpc (physical kpc); this results in a total size of about 120 pkpc.
We derive the velocity field of the LAB (assuming no transfer effects) and map
the Ly line width. Upper limits are set to the flux of the N V , C IV , He II , and C III] lines. We have discovered two probable Ly emitters at the
same redshift as the LAB and at projected distances of 265 kpc and 207 kpc from
the QSO; their Ly luminosities might well be enhanced by the QSO
radiation. We also find an emission line galaxy at near the line of
sight to the QSO.
This LAB shares the same general characteristics as the 17 others surrounding
radio-quiet QSOs presented previously. However, there are indications that it
may be centered on the PDLA galaxy rather than on the QSO.Comment: Accepted for publication in Astronomy & Astrophysics; 16 pages, 19
figure
Disease Systems Analysis of Bone Mineral Density and Bone Turnover Markers in Response to Alendronate, Placebo, and Washout in Postmenopausal Women
A previously established mechanism-based disease systems model for osteoporosis that is based on a mathematically reduced version of a model describing the interactions between osteoclast (bone removing) and osteoblast (bone forming) cells in bone remodeling has been applied to clinical data from women (n=1,379) receiving different doses and treatment regimens of alendronate, placebo, and washout. The changes in the biomarkers, plasma bone-specific alkaline phosphatase activity (BSAP), urinary N-telopeptide (NTX), lumbar spine bone mineral density (BMD), and total hip BMD, were linked to the underlying mechanistic core of the model. The final model gave an accurate description of all four biomarkers for the different treatments. Simulations were used to visualize the dynamics of the underlying network and the natural disease progression upon alendronate treatment and discontinuation. These results complement the previous applications of this mechanism-based disease systems model to data from various treatments for osteoporosis
Modelling high redshift Lyman α emitters
We present a new model for high redshift Lyman α emitters (LAEs) in the cosmological context which takes into account the resonant scattering of Lyα photons through expanding gas. The GALICS semi-analytic model provides us with the physical properties of a large sample of high redshift galaxies. We implement, in post-processing, a gas outflow model for each galaxy based on simple scaling arguments. The coupling with a library of numerical experiments of Lyα transfer through expanding (or static) dusty shells of gas allows us to derive the Lyα escape fraction and profile of each galaxy. Results obtained with this new approach are compared with simpler models often used in the literature. The predicted distribution of Lyα photons escape fraction shows that galaxies with a low star formation rate (SFR) have a fesc of the order of unity, suggesting that, for those objects, Lyα may be used to trace the SFR assuming a given conversion law. In galaxies forming stars intensely, the escape fraction spans the whole range from 0 to 1. The model is able to get a good match to the ultraviolet (UV) and Lyα luminosity function data at 3 < z < 5. We find that we are in good agreement with both the bright Lyα data and the faint LAE population observed by Rauch et al. at z= 3 whereas a simpler constant Lyαescape fraction model fails to do so. Most of the Lyα profiles of our LAEs are redshifted by the diffusion in the expanding gas which suppresses intergalactic medium absorption and scattering. The bulk of the observed Lyα equivalent width (EW) distribution is recovered by our model, but we fail to obtain the very large values sometimes detected. Our predictions for stellar masses and UV luminosity functions of LAEs show a satisfactory agreement with observational estimates. The UV-brightest galaxies are found to show only low Lyα EWs in our model, as it is reported by many observations of high redshift LAEs. We interpret this effect as the joint consequence of old stellar populations hosted by UV-bright galaxies, and high H i column densities that we predict for these objects, which quench preferentially resonant Lyα photons via dust extinctio
Brand and generic use of inhalation medication and frequency of switching in children and adults : a population-based cohort study
BACKGROUND: The expiration of patents of brand inhalation medications and the ongoing pressure on healthcare budgets resulted in a growing market for generics.
AIM: To study the use of brand and generic inhalation medication and the frequency of switching between brand and generic and between devices. In addition, we investigated whether switching affected adherence.
METHODS: From dispensing data from the Dutch PHARMO Database Network a cohort aged ≥ 5 years, using ≥ 1 year of inhalation medication between 2003 and 2012 was selected. Switching was defined as changing from brand to generic or vice versa. In addition, we studied change in aerosol delivery device type (e.g., DPI, pMDI, and nebulizers). Adherence was calculated using the medication possession ratio (MPR).
RESULTS: The total cohort comprised 70,053 patients with 1,604,488 dispensations. Per calendar year, 5% switched between brand and generic inhalation medication and 5% switched between devices. Median MPRs over the first 12 months ranged between 33 and 55%. Median MPR over the total period was lower after switch from brand to generic and vice versa for formoterol (44.5 vs. 42.1 and 63.5 vs. 53.8) and beclomethasone (93.8 vs. 59.8 and 81.3 vs. 55.9).
CONCLUSION: Per year, switching between brand and generic inhalation medication was limited to 5% of the patients, switching between device types was observed in 5% as well. Adherence to both generic and brand inhalation medication was low. Effect of switching on adherence was contradictory; depending on time period, medication and type, and direction of switching. Further research on reasons for switching and potential impact on clinical outcomes is warranted
The UV, Lyman α, and dark matter halo properties of high-redshift galaxies
We explore the properties of high-redshift Lyman alpha emitters (LAEs), and their link with the Lyman-break galaxy (LBG) population, using a semi-analytic model of galaxy formation that takes into account resonant scattering of Lyα photons in gas outflows. We can reasonably reproduce the abundances of LAEs and LBGs from z≈3 to 7, as well as most UV luminosity functions (LFs) of LAEs. The stronger dust attenuation for (resonant) Lyα photons compared to UV continuum photons in bright LBGs provides a natural interpretation to the increase of the LAE fraction in LBG samples, XLAE, towards fainter magnitudes. The redshift evolution of XLAE seems however very sensitive to UV magnitudes limits and equivalent width (EW) cuts. In spite of the apparent good match between the statistical properties predicted by the model and the observations, we find that the tail of the Lyα EW distribution (EW≳100 Å) cannot be explained by our model, and we need to invoke additional mechanisms. We find that LAEs and LBGs span a very similar dynamical range, but bright LAEs are ∼4times rarer than LBGs in massive haloes. Moreover, massive haloes mainly contain weak LAEs in our model, which might introduce a bias towards low-mass haloes in surveys which select sources with high-EW cuts. Overall, our results are consistent with the idea that LAEs and LBGs make a very similar galaxy population. Their apparent differences seem mainly due to EW selections, UV detection limits, and a decreasing Lyα to UV escape fraction ratio in high star formation rate galaxie
Modelling high redshift Lyman-alpha Emitters
We present a new model for high redshift Lyman-Alpha Emitters (LAEs) in the
cosmological context which takes into account the resonant scattering of Ly-a
photons through expanding gas. The GALICS semi-analytic model provides us with
the physical properties of a large sample of high redshift galaxies. We
implement a gas outflow model for each galaxy based on simple scaling
arguments. The coupling with a library of numerical experiments of Ly-a
transfer through expanding or static dusty shells of gas allows us to derive
the Ly-a escape fractions and profiles. The predicted distribution of Ly-a
photons escape fraction shows that galaxies with a low star formation rate have
a f_esc of the order of unity, suggesting that, for those objects, Ly-a may be
used to trace the star formation rate assuming a given conversion law. In
galaxies forming stars intensely, the escape fraction spans the whole range
from 0 to 1. The model is able to get a good match to the UV and Ly-a
luminosity function (LF) data at 3 < z < 5. We find that we are in good
agreement with both the bright Ly-a data and the faint population observed by
Rauch et al. (2008) at z=3. Most of the Ly-a profiles of our LAEs are
redshifted by the diffusion in the outflow which suppresses IGM absorption. The
bulk of the observed Ly-a equivalent width (EW) distribution is recovered by
our model, but we fail to obtain the very large values sometimes detected.
Predictions for stellar masses and UV LFs of LAEs show a satisfactory agreement
with observational estimates. The UV-brightest galaxies are found to show only
low Ly-a EWs in our model, as it is reported by many observations of high
redshift LAEs. We interpret this effect as the joint consequence of old stellar
populations hosted by UV-bright galaxies, and high HI column densities that we
predict for these objects, which quench preferentially resonant Ly-a photons
via dust extinction.Comment: 17 pages, 12 figures, 3 tables, accepted for publication in MNRA
Hypertension in older patients, a retrospective cohort study
Background: It is unknown to what extent General Practitioners (GPs) manage hypertension (HT) differently in older patients, as compared to younger age groups. The purpose of our study was to compare HT management in older patients to younger age groups. Methods: We performed a retrospective cohort study of patients of 159 GP's practices in the Integrated Primary Care Information (IPCI) database. The study period lasted from September 2010 through December 2012. The study population consisted of all patients aged 60 years or older with at least one blood pressure (BP) measurement during the inclusion period, without pre-existent HT, diabetes mellitus (DM) or atherosclerotic cardiovascular disease at time of study start. Study outcomes were a diagnosis of HT within one month after cohort entry and the use of antihypertensive medication within 4 months after cohort entry in HT diagnosed patients. We compared the incidence of outcomes between the age groups, stratified by systolic blood pressure (SBP). Logistic regression analysis was used to assess the influence of age-adjusted SBP Z-scores, age and gender on the outcomes. Results: We included 19,500 patients from 159 GP's practices of whom 1,181 (6.1 %) were newly diagnosed with HT. Corrected for age-adjusted SBP, older patients were less likely to be diagnosed with HT (odds ratio per year age increase 0.98, p < 0.001). Corrected for age-adjusted SBP, no significant effect of age on the probability of treatment in newly diagnosed HT patients was observed (p = 0.82). Conclusions: This study showed that GPs are less inclined to diagnose HT with increasing patient age, but do not withhold treatment when they diagnose HT in older patients
- …