2,358 research outputs found

    Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models.

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cystosolic nucleotide binding domains (NBDs), which are coupled with the transmembrane domains (TMDs) forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR, and thus the development of rational approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM287- 288, ABC-B10, McjD and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM287-288-based CFTR model could correspond to a commonly occupied closed state, while the McjD-based model could represent an open state. The models capture the important role played by Phe337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel

    Understanding the Roots of Radicalisation on Twitter

    Get PDF
    In an increasingly digital world, identifying signs of online extremism sits at the top of the priority list for counter-extremist agencies. Researchers and governments are investing in the creation of advanced information technologies to identify and counter extremism through intelligent large-scale analysis of online data. However, to the best of our knowledge, these technologies are neither based on, nor do they take advantage of, the existing theories and studies of radicalisation. In this paper we propose a computational approach for detecting and predicting the radicalisation influence a user is exposed to, grounded on the notion of ’roots of radicalisation’ from social science models. This approach has been applied to analyse and compare the radicalisation level of 112 pro-ISIS vs.112 “general" Twitter users. Our results show the effectiveness of our proposed algorithms in detecting and predicting radicalisation influence, obtaining up to 0.9 F-1 measure for detection and between 0.7 and 0.8 precision for prediction. While this is an initial attempt towards the effective combination of social and computational perspectives, more work is needed to bridge these disciplines, and to build on their strengths to target the problem of online radicalisation

    Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the adenosine triphosphate (ATP)-binding cassette (ABC) superfamily. ABC proteins share a common molecular mechanism that couples ATP binding and hydrolysis at two nucleotide-binding domains (NBDs) to diverse functions. This involves formation of NBD dimers, with ATP bound at two composite interfacial sites. In CFTR, intramolecular NBD dimerization is coupled to channel opening. Channel closing is triggered by hydrolysis of the ATP molecule bound at composite site 2. Site 1, which is non-canonical, binds nucleotide tightly but is not hydrolytic. Recently, based on kinetic arguments, it was suggested that this site remains closed for several gating cycles. To investigate movements at site 1 by an independent technique, we studied changes in thermodynamic coupling between pairs of residues on opposite sides of this site. The chosen targets are likely to interact based on both phylogenetic analysis and closeness on structural models. First, we mutated T460 in NBD1 and L1353 in NBD2 (the corresponding site-2 residues become energetically coupled as channels open). Mutation T460S accelerated closure in hydrolytic conditions and in the nonhydrolytic K1250R background; mutation L1353M did not affect these rates. Analysis of the double mutant showed additive effects of mutations, suggesting that energetic coupling between the two residues remains unchanged during the gating cycle. We next investigated pairs 460-1348 and 460-1375. Although both mutations H1348A and H1375A produced dramatic changes in hydrolytic and nonhydrolytic channel closing rates, in the corresponding double mutants these changes proved mostly additive with those caused by mutation T460S, suggesting little change in energetic coupling between either positions 460-1348 or positions 460-1375 during gating. These results provide independent support for a gating model in which ATP-bound composite site 1 remains closed throughout the gating cycle

    Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation.

    Get PDF
    CFTR is the only member of the ABC (ATP-binding cassette) protein superfamily known to function as an ion channel. Most other ABC proteins are ATP-driven transporters, in which a cycle of ATP binding and hydrolysis, at intracellular nucleotide binding domains (NBDs), powers uphill substrate translocation across the membrane. In CFTR, this same ATP-driven cycle opens and closes a transmembrane pore through which chloride ions flow rapidly down their electrochemical gradient. Detailed analysis of the pattern of gating of CFTR channels thus offers the opportunity to learn about mechanisms of function not only of CFTR channels but also of their ABC transporter ancestors. In addition, CFTR channel gating is subject to complex regulation by kinase-mediated phosphorylation at multiple consensus sites in a cytoplasmic regulatory domain that is unique to CFTR. Here we offer a practical guide to extract useful information about the mechanisms that control opening and closing of CFTR channels: on how to plan (including information obtained from analysis of multiple sequence alignments), carry out, and analyze electrophysiological and biochemical experiments, as well as on how to circumvent potential pitfalls

    Structure of Transmembrane Helix 8 and Possible Membrane Defects in CFTR

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that regulates the flow of anions across epithelia. Mutations in CFTR cause cystic fibrosis. CFTR belongs to the ATP-binding cassette transporter superfamily, and gating is controlled by phosphorylation and ATP binding and hydrolysis. Recently obtained ATP-free and ATP-bound structures of zebrafish CFTR revealed an unwound segment of transmembrane helix (TM) 8, which appears to be a unique feature of CFTR not present in other ATP-binding cassette transporter structures. Here, using μs-long molecular dynamics simulations, we investigate the interactions formed by this TM8 segment with nearby helices in both ATP-free and ATP-bound states. We highlight ATP-dependent interactions as well as the structural role of TM8 in maintaining the functional architecture of the pore via interactions common to both the ATP-bound and ATP-free state. The results of the molecular dynamics simulations are discussed in the context of the gating mechanism of CFTR

    Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter. It acts as an anion‐selective channel that drives osmotic fluid transport across many epithelia. In the gut, CFTR is crucial for maintaining fluid and acid‐base homeostasis, and its activity is tightly controlled by multiple neuro‐endocrine factors. However, microbial toxins can disrupt this intricate control mechanism and trigger protracted activation of CFTR. This results in the massive faecal water loss, metabolic acidosis and dehydration that characterize secretory diarrhoeas, a major cause of malnutrition and death of children under 5 years of age. Compounds that inhibit CFTR could improve emergency treatment of diarrhoeal disease. Drawing on recent structural and functional insight, we discuss how existing CFTR inhibitors function at the molecular and cellular level. We compare their mechanisms of action to those of inhibitors of related ABC transporters, revealing some unexpected features of drug action on CFTR. Although challenges remain, especially relating to the practical effectiveness of currently available CFTR inhibitors, we discuss how recent technological advances might help develop therapies to better address this important global health need

    Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains

    Get PDF
    Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis (CF). The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at eleven positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508 and F1074 in wild-type CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced towards the space vacated by F508, while, in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction
    corecore