173 research outputs found
Rapid and Efficient Generation of Recombinant Human Pluripotent Stem Cells by Recombinase-mediated Cassette Exchange in the AAVS1 Locus
Even with the revolution of gene-targeting technologies led by CRISPR-Cas9, genetic modification of human pluripotent stem cells (hPSCs) is still time consuming. Comparative studies that use recombinant lines with transgenes integrated into safe harbor loci could benefit from approaches that use site-specific targeted recombinases, like Cre or FLPe, which are more rapid and less prone to off-target effects. Such methods have been described, although they do not significantly outperform gene targeting in most aspects. Using Zinc-finger nucleases, we previously created a master cell line in the AAVS1 locus of hPSCs that contains a GFP-Hygromycin-tk expressing cassette, flanked by heterotypic FRT sequences. Here, we describe the procedures to perform FLPe recombinase-mediated cassette exchange (RMCE) using this line. The master cell line is transfected with a RMCE donor vector, which contains a promoterless Puromycin resistance, and with FLPe recombinase. Application of both a positive (Puromycin) and negative (FIAU) selection program leads to the selection of RMCE without random integrations. RMCE generates fully characterized pluripotent polyclonal transgenic lines in 15 d with 100% efficiency. Despite the recently described limitations of the AAVS1 locus, the ease of the system paves the way for hPSC transgenesis in isogenic settings, is necessary for comparative studies, and enables semi-high-throughput genetic screens for gain/loss of function analysis that would otherwise be highly time consuming
Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes
Accurate encoding of the spatio-temporal properties of others' actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions ("slow-motion" bias), allowing for more detailed representation of ongoing actions and refined prediction abilities
Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition
Tools for rapid and efficient transgenesis in "safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes
Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma
Evidence suggests that multiple tumors, including pancreatic adenocarcinoma, display heterogeneity in parameters that are critical for tumor formation, progression and metastasis. Understanding heterogeneity in solid tumors is increasingly providing a plethora of new diagnostic and therapeutic approaches. In this study, a particular focus was put on identifying a subpopulation of stem cell-like, slow cycling tumor cells in a pancreas adenocarcinoma cell lines. Using a label retention technique a subpopulation of slow cycling cells (DiI+/SCC) was identified and further evaluated in the BxPC-3 and Panc03.27 cell lines. These slowly cycling cells managed to retain the lipophilic labeling dye DiI, while the bulk of the cells (>94%) did not. The DiI+/SCC population, showed only a partial overlap with the CSC markers CD24+/CD44+, CD133+ and ALDH but they survived chemotherapeutic treatment, and were able to recreate the initial heterogeneous tumor cell population. DiI+/SCCs exhibited an increased invasive potential as compared with their non-label retaining, faster cycling cells (DiI−/FCC). They also had increased tumorigenic potential and morphological changes resembling cells that have undergone an epithelial to mesenchymal transition (EMT). Analysis of DiI+/SCC cells by real time PCR revealed a selective up-regulation of tell tale components of the Hedgehog/TGFβ pathways, as well as a down-regulation of EGFR, combined with a shift in crucial components implied in EMT. The presented findings offer an expanded mechanistic understanding that associates tumor initiating potential with cycling speed and EMT in pancreatic cancer cell lines
Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2
INTRODUCTION: Murine microglia expressing the Alzheimer's disease-linked TREM2R47H mutation display variable decrease in phagocytosis, while impaired phagocytosis is reported following loss of TREM2. However, no data exist on TREM2+/R47H human microglia. Therefore, we created human pluripotent stem cell (hPSC) monocytes and transdifferentiated microglia-like cells (tMGs) to examine the effect of the TREM2+/R47H mutation and loss of TREM2 on phagocytosis. METHODS: We generated isogenic TREM2+/R47H, TREM2+/-, and TREM2-/- hPSCs using CRISPR/Cas9. Following differentiation to monocytes and tMGs, we studied the uptake of Escherichia coli fragments and analyzed amyloid plaque clearance from cryosections of APP/PS1+/- mouse brains. RESULTS: We demonstrated that tMGs resemble cultured human microglia. TREM2+/- and TREM2-/- hPSC monocytes and tMGs phagocytosed significantly less E. coli fragments and cleared less amyloid plaques than wild-type hPSC progeny, with no difference for TREM2+/R47H progeny. DISCUSSION: In vitro phagocytosis of hPSC monocytes and tMGs was not affected by the TREM2+/R47H mutation but was significantly impaired in TREM2+/- and TREM2-/- progeny
Neurobiological basis and risk factors of persistent fatigue and concentration problems after COVID-19: study protocol for a prospective case–control study (VeCosCO)
Introduction: The risk factors for persistent fatigue and cognitive complaints after infection with SARS-CoV-2 and the underlying pathophysiology are largely unknown. Both clinical factors and cognitive-behavioural factors have been suggested to play a role in the perpetuation of complaints. A neurobiological aetiology, such as neuroinflammation, could be the underlying pathophysiological mechanism for persisting complaints.
To unravel factors associated with persisting complaints, VeCosCO will compare individuals with and without persistent fatigue and cognitive complaints >3 months after infection with SARS-CoV-2. The study consists of two work packages. The first work package aims to (1) investigate the relation between persisting complaints and neuropsychological functioning; (2) determine risk factors and at-risk phenotypes for the development of persistent fatigue and cognitive complaints, including the presence of postexertional malaise and (3) describe consequences of persistent complaints on quality of life, healthcare consumption and physical functioning. The second work package aims to (1) determine the presence of neuroinflammation with [18F]DPA-714 whole-body positron emission tomography (PET) scans in patients with persisting complaints and (2) explore the relationship between (neuro)inflammation and brain structure and functioning measured with MRI. /
Methods and analysis: This is a prospective case–control study in participants with and without persistent fatigue and cognitive complaints, >3 months after laboratory-confirmed SARS-CoV-2 infection. Participants will be mainly included from existing COVID-19 cohorts in the Netherlands covering the full spectrum of COVID-19 acute disease severity. Primary outcomes are neuropsychological functioning, postexertional malaise, neuroinflammation measured using [18F]DPA-714 PET, and brain functioning and structure using (f)MRI. /
Ethics and dissemination: Work package 1 (NL79575.018.21) and 2 (NL77033.029.21) were approved by the medical ethical review board of the Amsterdam University Medical Centers (The Netherlands). Informed consent is required prior to participation in the study. Results of this study will be submitted for publication in peer-reviewed journals and shared with the key population
Human CD34+/CD90+ ASCs Are Capable of Growing as Sphere Clusters, Producing High Levels of VEGF and Forming Capillaries
Background: Human adult adipose tissue is an abundant source of mesenchymal stem cells (MSCs). Moreover, it is an easily
accessible site producing a considerable amount of stem cells.
Methodology/Principal Findings: In this study, we have selected and characterized stem cells within the stromal vascular
fraction (SVF) of human adult adipose tissue with the aim of understanding their differentiation capabilities and
performance. We have found, within the SVF, different cell populations expressing MSC markers – including CD34, CD90,
CD29, CD44, CD105, and CD117 – and endothelial-progenitor-cell markers – including CD34, CD90, CD44, and CD54.
Interestingly, CD34+/CD90+ cells formed sphere clusters, when placed in non-adherent growth conditions. Moreover, they
showed a high proliferative capability, a telomerase activity that was significantly higher than that found in differentiated
cells, and contained a fraction of cells displaying the phenotype of a side population. When cultured in adipogenic medium,
CD34+/CD90+ quickly differentiated into adipocytes. In addition, they differentiated into endothelial cells (CD31+/VEGF+/Flk-
1+) and, when placed in methylcellulose, were capable of forming capillary-like structures producing a high level of VEGF, as
substantiated with ELISA tests.
Conclusions/Significance: Our results demonstrate, for the first time, that CD34+/CD90+ cells of human adipose tissue are
capable of forming sphere clusters, when grown in free-floating conditions, and differentiate in endothelial cells that form
capillary-like structures in methylcellulose. These cells might be suitable for tissue reconstruction in regenerative medicine,
especially when patients need treatments for vascular disease
Disease-associated fibronectin matrix fragments trigger anoikis of human primary ligament cells: p53 and c-myc are suppressed
Inflammation in periodontal disease is characterized by the breakdown of the extracellular matrix. This study shows that an inflammation-associated matrix breakdown fragment of fibronectin (FN) induces anoikis of human periodontal ligament (PDL) cells. This 40 kDa fragment was identified in human inflammatory crevicular fluid and is associated with disease status. Previously, we reported that a similar recombinant FN fragment triggered apoptosis of PDL cells by an alternate apoptotic signaling pathway that requires transcriptional downregulation of p53 and c-myc. Thus, to determine whether the physiologically relevant 40 kDa fragment triggers apoptosis in these cells, the 40 kDa fragment was generated and studied for its apoptotic properties. The 40 kDa fragment induces apoptosis of PDL cells, and preincubation of cells with intact vitronectin, FN, and to a limited extent collagen I, rescue this apoptotic phenotype. These data suggest that the 40 kDa fragment prevents PDL cell spreading, thereby inducing anoikis. The signaling pathway also involves a downregulation in p53 and c-myc, as determined by Western blotting and real time quantitative PCR. These data indicate that an altered FN matrix as is elaborated in inflammation induces anoikis of resident cells and thus may contribute to disease progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44344/1/10495_2005_Article_1880.pd
Selective Enhancement of Donor Hematopoietic Cell Engraftment by the CXCR4 Antagonist AMD3100 in a Mouse Transplantation Model
The interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation
- …