2 research outputs found

    Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets

    Get PDF
    It has been well established that excessive levels of glucose and palmitate lower glucose-stimulated insulin secretion (GSIS) by pancreatic beta cells. This beta cell 'glucolipotoxicity' is possibly mediated by mitochondrial dysfunction, but involvement of bioenergetic failure in the pathological mechanism is subject of ongoing debate. We show here that increased palmitate levels impair GSIS before altering mitochondrial function. We demonstrate that GSIS defects arise from increased insulin release under basal conditions in addition to decreased insulin secretion under glucose-stimulatory conditions. Real-time respiratory analysis of intact mouse pancreatic islets reveals that mitochondrial ATP synthesis is not involved in the mechanism by which basal insulin is elevated. Equally, mitochondrial lipid oxidation and production of reactive oxygen species do not contribute to increased basal insulin secretion. Palmitate does not affect KCl-induced insulin release at a basal or stimulatory glucose level, but elevated basal insulin release is attenuated by palmitoleate and associates with increased intracellular calcium. These findings deepen our understanding of beta cell glucolipotoxicity and reveal that palmitate-induced GSIS impairment is disconnected from mitochondrial dysfunction, a notion that is important when targeting beta cells for the treatment of diabetes and when assessing islet function in human transplants

    Cross-sectional study investigating the association between inflammatory biomarkers and neuropathy in adolescents with type 1 diabetes

    No full text
    Objectives The aims of this study were to investigate circulating levels of inflammatory markers in adolescents with type 1 diabetes with and without different types of neuropathies and evaluate the association between inflammatory biomarkers, nerve function and clinical parameters.Design Cross-sectional study.Setting Hospitals and Steno Diabetes Center in Denmark.Participants Adolescents with more than 5 years of diabetes duration were investigated for large fibre, small fibre and autonomic neuropathy as a part of the T1DANES study. Blood samples from the participants were analysed for inflammatory biomarkers by Meso Scale Discovery multiplexing technology.Primary and secondary outcome measures Inflammatory biomarkers and results of diagnostic nerve tests.Results Fifty-six adolescents with type 1 diabetes and 23 healthy controls were included. The adolescents with diabetes had significantly higher interferon-gamma, tumour necrosis factor-alpha (TNF-a), interleukin (IL)-10 and soluble urokinase plasminogen activator receptor (suPAR) compared with healthy controls (p values<0.05). TNF-a was higher in the adolescents with large fibre neuropathy (LFN) (p=0.03) compared with those without LFN in the group with diabetes. A negative correlation was seen between TNF-a and conduction velocity in nervus tibialis (p=0.04), and higher TNF-a and IL-6 were associated with higher gastric motility index (TNF-a, p value=0.03; IL-6, p value=0.02). There were no significant associations between inflammatory markers and expressed symptoms, haemoglobin A1c, diabetes duration or body mass index standard derivation score (p values>0.05). The receiver operating characteristic (ROC) curves for the inflammatory markers suggested them as poor screening methods for all types of neuropathies with an area under the curve between 0.47 and 0.67.Conclusion Our results confirm increased low-grade inflammation in adolescents with type 1 diabetes. TNF-a was higher in adolescents with LFN and correlated negatively with nervus tibialis conduction velocity. The other inflammatory biomarkers fail to support differences in those with and without different types of diabetic neuropathies. However, TNF-a and IL-6 were positively correlated to gastric motility index
    corecore