10 research outputs found
Recommended from our members
Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
Background: Human pluripotent stem cells offer the best available model to study the underlying cellular and molecular mechanisms of human embryonic lineage specification. However, it is not fully understood how individual stem cells exit the pluripotent state and transition towards their respective progenitor states. Results: Here, we analyze the transcriptomes of human embryonic stem cell-derived lineage-specific progenitors by single-cell RNA-sequencing (scRNA-seq). We identify a definitive endoderm (DE) transcriptomic signature that leads us to pinpoint a critical time window when DE differentiation is enhanced by hypoxia. The molecular mechanisms governing the emergence of DE are further examined by time course scRNA-seq experiments, employing two new statistical tools to identify stage-specific genes over time (SCPattern) and to reconstruct the differentiation trajectory from the pluripotent state through mesendoderm to DE (Wave-Crest). Importantly, presumptive DE cells can be detected during the transitory phase from Brachyury (T)+ mesendoderm toward a CXCR4+ DE state. Novel regulators are identified within this time window and are functionally validated on a screening platform with a T-2A-EGFP knock-in reporter engineered by CRISPR/Cas9. Through loss-of-function and gain-of-function experiments, we demonstrate that KLF8 plays a pivotal role modulating mesendoderm to DE differentiation. Conclusions: We report the analysis of 1776 cells by scRNA-seq covering distinct human embryonic stem cell-derived progenitor states. By reconstructing a differentiation trajectory at single-cell resolution, novel regulators of the mesendoderm transition to DE are elucidated and validated. Our strategy of combining single-cell analysis and genetic approaches can be applied to uncover novel regulators governing cell fate decisions in a variety of systems. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1033-x) contains supplementary material, which is available to authorized users
Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes
<p>Abstract</p> <p>Background</p> <p>Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions.</p> <p>Results</p> <p>The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels.</p> <p>Conclusions</p> <p>This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.</p
Expandable Arterial Endothelial Precursors from Human CD34+ Cells Differ in Their Proclivity to Undergo an Endothelial-to-Mesenchymal Transition
Summary: Arterial diseases continue to pose a major health concern but inĀ vitro studies are limited because explanted cells can exhibit poor proliferative capacity and a loss of specificity. Here, we find that two transcription factors, MYCN and SOX17, induce and indefinitely expand in culture precursors of human arterial endothelial cells (expandable arterial endothelial precursors [eAEPs]). The eAEPs are derived from CD34+ cells found in umbilical cord blood or adult bone marrow. Independent eAEP lines differ in their proclivity to undergo an endothelial-to-mesenchymal transition (EndoMT), a hallmark event in a broad array of vascular diseases and disorders. Some cell lines spontaneously become mesenchymal over time in culture, an effect exacerbated by inhibition of the fibroblast growth factor receptor, while others do not readily convert. These distinctions were exploited to identify genes that correlate with resistance to an EndoMT and to elucidate transcriptional changes that underpin the transition
An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor
During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that ātrapā murine cells in a proliferative state and endow them with a hemangioblast potential. These āexpandableā hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role forĀ fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells andĀ leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed inĀ vitro, enabling the creation of tractable progenitor cell lines
Nonirradiated NOD,B6.SCID Il2rĪ³ā/ā KitW41/W41 (NBSGW) Mice Support Multilineage Engraftment of Human Hematopoietic Cells
In this study, we demonstrate a newly derived mouse model that supports engraftment of human hematopoietic stem cells (HSCs) in the absence of irradiation. We cross the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) strain with the C57BL/6J-KitW-41J/J (C57BL/6.KitW41) strain and engraft, without irradiation, the resulting NBSGW strain with human cord blood CD34+ cells. At 12-weeks postengraftment in NBSGW mice, we observe human cell chimerism in marrow (97% Ā± 0.4%), peripheral blood (61% Ā± 2%), and spleen (94% Ā± 2%) at levels observed with irradiation in NSG mice. We also detected a significant number of glycophorin-A-positive expressing cells in the developing NBSGW marrow. Further, the observed levels of human hematopoietic chimerism mimic those reported for both irradiated NSG and NSG-transgenic strains. This mouse model permits HSC engraftment while avoiding the complicating hematopoietic, gastrointestinal, and neurological side effects associated with irradiation and allows investigators without access to radiation to pursue engraftment studies with human HSCs