295 research outputs found

    A dichotomy in dust-jet orientation in radio galaxies

    Full text link
    We have analyzed the position angle (PA) differences between radio jets and dust distributions in the centers of Fanaroff & Riley Type 1 (FRI) radio galaxies. We model the observed PA differences to infer the three-dimensional relative orientation of jet and dust. Our main conclusion is that there is a dichotomy in dust-jet-galaxy orientation both in projection and in three-dimensional space. The orientation dichotomy can explain the contradictory results obtained in previous studies. We briefly mention scenarios that might explain the dichotomy.Comment: 2 pages, 2 figures, to appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", IAU Symposium 222, eds. Th. Storchi Bergmann, L.C. Ho & H.R. Schmit

    A dichotomy in radio jet orientations

    Full text link
    We examine the relative orientations of radio jets, central dust and stars in low-power (i.e., FR I and FR I/II) radio galaxies. We use the position angles of jet and dust to constrain the three-dimensional angle θDJ\theta_{\rm DJ} between jet and dust. For galaxies with filamentary dust 'lanes' (which tend to be misaligned with the galaxy major axis) the jet is approximately perpendicular to the dust structure, while for galaxies with elliptical dust distributions (typically aligned with the galaxy major axis) there is a much wider distribution of θDJ\theta_{\rm DJ}. nThe dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped, unsettled dust structures. We consider two scenarios to explain the dust/jet orientation dichotomy.Comment: 4pages, submitted to "QSO Hosts: Evolution and Environment", P.D. Barthel, D.B. Sanders, eds., August 2005, New Astr. Rev. Detailed description of analysis available in 2005 A&A 435,43 (astro-ph/0502075

    Gravity's Relentless Pull: An interactive, multimedia website about black holes for Education and Public Outreach

    Get PDF
    We have created a website, called "Black Holes: Gravity's Relentless Pull", which explains the physics and astronomy of black holes for a general audience. The site emphasizes user participation and is rich in animations and astronomical imagery. It won the top prize of the 2005 Pirelli INTERNETional Awards competition for the best communication of science and technology using the internet. This article provides a brief overview of the site. The site starts with an opening animation that introduces the basic concept of a black hole. The user is then invited to embark on a journey from a backyard view of the night sky to a personal encounter with a singularity. This journey proceeds through three modules, which allow the user to: find black holes in the night sky; travel to a black hole in an animated starship; and explore a black hole from up close. There are also five "experiments" that allow the user to: create a black hole; orbit around a black hole; weigh a black hole; drop a clock into a black hole; or fall into a black hole. The modules and experiments offer goal-based scenarios tailored for novices and children. The site also contains an encyclopedia of frequently asked questions and a detailed glossary that are targeted more at experts and adults. The overall result is a website where scientific knowledge, learning theory, and fun converge. Despite its focus on black holes, the site also teaches many other concepts of physics, astronomy and scientific thought. The site aims to instill an appreciation for learning and an interest in science, especially in the younger users. It can be used as an aid in teaching introductory astronomy at the undergraduate level.Comment: STScI Newsletter, 2006, vol. 23, number 2, in press; 5 pages and 2 figures. The black hole website described in this article is located at http://hubblesite.org/go/blackholes/ . We welcome all feedback and suggestions, which can be submitted through the "Contact Us" button of the sit

    Euclid Preparation:XIV. The Complete Calibration of the Color-Redshift Relation (C3R2) Survey: Data Release 3

    Get PDF
    The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i ~ 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage IV dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < zp < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman

    Euclid preparation:I. The Euclid Wide Survey

    Get PDF
    • …
    corecore