8 research outputs found
Prospects in Constraining the Dark Energy Potential
We generalize to non-flat geometries the formalism of Simon et al. (2005) to
reconstruct the dark energy potential. This formalism makes use of quantities
similar to the Horizon-flow parameters in inflation, can, in principle, be made
non-parametric and is general enough to be applied outside the simple, single
scalar field quintessence. Since presently available and forthcoming data do
not allow a non-parametric and exact reconstruction of the potential, we
consider a general parametric description in term of Chebyshev polynomials. We
then consider present and future measurements of H(z), Baryon Acoustic
Oscillations surveys and Supernovae type 1A surveys, and investigate their
constraints on the dark energy potential. We find that, relaxing the flatness
assumption increases the errors on the reconstructed dark energy evolution but
does not open up significant degeneracies, provided that a modest prior on
geometry is imposed. Direct measurements of H(z), such as those provided by BAO
surveys, are crucially important to constrain the evolution of the dark energy
potential and the dark energy equation of state, especially for non-trivial
deviations from the standard LambdaCDM model.Comment: 22 pages, 7 figures. 2 references correcte
The Lyth Bound and the End of Inflation
We derive an extended version of the well-known Lyth Bound on the total
variation of the inflaton field, incorporating higher order corrections in slow
roll. We connect the field variation to both the spectral index of
scalar perturbations and the amplitude of tensor modes. We then investigate the
implications of this bound for ``small field'' potentials, where the field
rolls off a local maximum of the potential. The total field variation during
inflation is {\em generically} of order , even for potentials with
a suppressed tensor/scalar ratio. Much of the total field excursion arises in
the last e-fold of inflation and in single field models this problem can only
be avoided via fine-tuning or the imposition of a symmetry. Finally, we discuss
the implications of this result for inflationary model building in string
theory and supergravity.Comment: 10 pages, RevTeX, 2 figures (V3: version accepted for publication by
JCAP
Lectures on Cosmic Inflation and its Potential Stringy Realizations
These notes present a brief introduction to Hot Big Bang cosmology and Cosmic
Inflation, together with a selection of some recent attempts to embed inflation
into string theory. They provide a partial description of lectures presented in
courses at Dubrovnik in August 2006, at CERN in January 2007 and at Cargese in
August 2007. They are aimed at graduate students with a working knowledge of
quantum field theory, but who are unfamiliar with the details of cosmology or
of string theory.Comment: 68 pages, lectures given at Dubrovnik, Aug 2006; CERN, January 2007;
and Cargese, Aug 200
The DESI experiment part I: science, targeting, and survey design
DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to . To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to . Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts (), for the Ly- forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median . In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions
The DESI Experiment Part II: Instrument Design
DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. The DESI instrument is a robotically-actuated, fiber-fed spectrograph capable of taking up to 5,000 simultaneous spectra over a wavelength range from 360 nm to 980 nm. The fibers feed ten three-arm spectrographs with resolution between 2000 and 5500, depending on wavelength. The DESI instrument will be used to conduct a five-year survey designed to cover 14,000 deg. This powerful instrument will be installed at prime focus on the 4-m Mayall telescope in Kitt Peak, Arizona, along with a new optical corrector, which will provide a three-degree diameter field of view. The DESI collaboration will also deliver a spectroscopic pipeline and data management system to reduce and archive all data for eventual public use