42 research outputs found

    UNC-Utah NA-MIC framework for DTI fiber tract analysis

    Get PDF
    pre-printDiffusion tensor imaging has become an important modality in field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-tecnical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In This limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts

    Assessment of oxidative potential of fine aerosols from different indoor and outdoor environments

    Get PDF
    Trabalho apresentado em European Aerosol Conference 2023 (EAC2023), September 3−8, 2023, Malaga, SpainN/

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<Ï”1<0.0320 < \epsilon_1 < 0.032 and Ï”2+5.0Ï”1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models V∝ϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Estimating the tensor-to-scalar ratio and the effect of residual foreground contamination

    Full text link
    We consider future balloon-borne and ground-based suborbital experiments designed to search for inflationary gravitational waves, and investigate the impact of residual foregrounds that remain in the estimated cosmic microwave background maps. This is achieved by propagating foreground modelling uncertainties from the component separation, under the assumption of a spatially uniform foreground frequency scaling, through to the power spectrum estimates, and up to measurement of the tensor to scalar ratio in the parameter estimation step. We characterize the error covariance due to subtracted foregrounds, and find it to be subdominant compared to instrumental noise and sample variance in our simulated data analysis. We model the unsubtracted residual foreground contribution using a two-parameter power law and show that marginalization over these foreground parameters is effective in accounting for a bias due to excess foreground power at low ℓ\ell. We conclude that, at least in the suborbital experimental setups we have simulated, foreground errors may be modeled and propagated up to parameter estimation with only a slight degradation of the target sensitivity of these experiments derived neglecting the presence of the foregrounds.Comment: 19 pages, 12 figures, accepted for publication in JCA

    WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant

    Full text link
    We present observational constraints on a scalar-tensor gravity theory by χ2\chi^2 test for CMB anisotropy spectrum. We compare the WMAP temperature power spectrum with the harmonic attractor model, in which the scalar field has its harmonic effective potential with curvature ÎČ\beta in the Einstein conformal frame and the theory relaxes toward Einstein gravity with time. We found that the present value of the scalar coupling, i.e. the present level of deviation from Einstein gravity (α02)(\alpha_0^2), is bounded to be smaller than 5×10−4−7ÎČ5\times 10^{-4-7\beta} (2σ2\sigma), and 10−2−7ÎČ10^{-2-7\beta} (4σ4\sigma) for 0<ÎČ<0.450< \beta<0.45. This constraint is much stronger than the bound from the solar system experiments for large ÎČ\beta models, i.e., ÎČ>0.2\beta> 0.2 and 0.3 in 2σ2\sigma and 4σ4\sigma limits, respectively. Furthermore, within the framework of this model, the variation of the gravitational constant at the recombination epoch is constrained as ∣G(z=zrec)−G0∣/G0<0.05(2σ)|G(z=z_{rec})-G_0|/G_0 < 0.05(2\sigma), and 0.23(4σ)0.23(4\sigma).Comment: 7 page

    Fibre Inflation: Observable Gravity Waves from IIB String Compactifications

    Full text link
    We introduce a simple string model of inflation, in which the inflaton field can take trans-Planckian values while driving a period of slow-roll inflation. This leads naturally to a realisation of large field inflation, inasmuch as the inflationary epoch is well described by the single-field scalar potential V=V0(3−4e−φ^/3)V = V_0 (3-4 e^{-\hat\varphi/\sqrt{3}}). Remarkably, for a broad class of vacua all adjustable parameters enter only through the overall coefficient V0V_0, and in particular do not enter into the slow-roll parameters. Consequently these are determined purely by the number of \e-foldings, NeN_e, and so are not independent: Δ≃32η2\varepsilon \simeq \frac32 \eta^2. This implies similar relations among observables like the primordial scalar-to-tensor amplitude, rr, and the scalar spectral tilt, nsn_s: r≃6(ns−1)2r \simeq 6(n_s - 1)^2. NeN_e is itself more model-dependent since it depends partly on the post-inflationary reheat history. In a simple reheating scenario a reheating temperature of Trh≃109T_{rh}\simeq 10^{9} GeV gives Ne≃58N_e\simeq 58, corresponding to ns≃0.970n_s\simeq 0.970 and r≃0.005r\simeq 0.005, within reach of future observations. The model is an example of a class that arises naturally in the context of type IIB string compactifications with large-volume moduli stabilisation, and takes advantage of the generic existence there of Kahler moduli whose dominant appearance in the scalar potential arises from string loop corrections to the Kahler potential. The inflaton field is a combination of Kahler moduli of a K3-fibered Calabi-Yau manifold. We believe there are likely to be a great number of models in this class -- `high-fibre models' -- in which the inflaton starts off far enough up the fibre to produce observably large primordial gravity waves.Comment: Extended calculations beyond the leading approximations, including numerical integrations of multi-field evolution; Display an example with r=0.01r = 0.01; Simplify the discussion of large fields; Corrected minor errors and typos; Added references; 41 pages LaTeX, 25 figure

    The Evolution of Inverse Power Law Quintessence at Low Redshift

    Full text link
    Quintessence models based on a scalar field, phi, with an inverse power law potential display simple tracking behavior at early times, when the quintessence energy density, rho_phi, is sub-dominant. At late times, when rho_phi becomes comparable to the matter density, the evolution of phi diverges from its scaling behavior. We calculate the first order departure of phi from its tracker solution at low redshift. Our results for the evolution of phi, rho_phi, Omega_phi, and w are suprisingly accurate even down to z=0. We find that w and Omega_phi are related linearly to first order. We also derive a semi-analytic expression for w(z) which is accurate to within a few percent. Our analytic techniques are potentially applicable to any quintessence model in which the quintessence component comes to dominate at late times.Comment: 6 pages, 6 figures, new figure added, numerous clarification

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR

    Constraining the dark energy dynamics with the cosmic microwave background bispectrum

    Full text link
    We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole ll: we show that it is non-zero in a narrow interval centered at a redshift zz satisfying the relation l/r(z)≃kNL(z)l/r(z)\simeq k_{NL}(z), where the wavenumber corresponds to the scale entering the non-linear phase, and rr is the cosmological comoving distance. The relevant redshift interval is in the range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D, one figure improve

    An inflation model with large variations in spectral index

    Get PDF
    Recent fits of cosmological parameters by the Wilkinson Microwave Anisotropy Probe (WMAP) measurement favor a primordial scalar spectrum with varying index. This result, if stands, could severely constrain inflation model buildings. Most extant slow-roll inflation models allow for only a tiny amount of scale variations in the spectrum. We propose in this paper an extra-dimensional inflation model which is natural theoretically and can generate the required variations of the spectral index as implied by the WMAP for suitable choices of parameters.Comment: 5 pages, 3 figures, REVTeX 4. Comments on low CMB quadrupoles added; Version accepted for publication in Phys. Rev.
    corecore