938 research outputs found

    Cofrobenius Corings and adjoint Functors

    Get PDF
    We study co-Frobenius and more generally Quasi-co-Frobenius corings over arbitrary baserings and over PF baserings in particular. We generalize some results about (Quasi-) co-Frobenius coalgebras to the case of non-commutative base rings and give several new characterisations for co-Frobenius and Quasi-co-Frobenius corings, some of them are new even in the coalgebra situation. We construct Morita contexts to study Frobenius properies of corings and a second kind of Morita contexts to study adjoint pairs. Comparing both Morita contexts, we obtain our main result that characterises (Quasi-) co-Frobenius corings in terms of a pair adjoint functors (F,G)(F,G) such that (G,F)(G,F) is locally (Quasi-) adjoint in a sense defined in this note.Comment: Strongly revised version: major changes in section 3, 5.2 and 5.3, minor changes elsewhere. Change of title (on request of the referee

    Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: Zoonotic hybrid schistosomiasis in West Africa

    Get PDF
    Multihost multiparasite systems are evolutionarily and ecologically dynamic, which presents substantial trans‐disciplinary challenges for elucidating their epidemiology and designing appropriate control. Evidence for hybridizations and introgressions between parasite species is gathering, in part in line with improvements in molecular diagnostics and genome sequencing. One major system where this is becoming apparent is within the Genus Schistosoma, where schistosomiasis represents a disease of considerable medical and veterinary importance, the greatest burden of which occurs in sub‐Saharan Africa. Interspecific hybridizations and introgressions bring an increased level of complexity over and above that already inherent within multihost, multiparasite systems, also representing an additional source of genetic variation that can drive evolution. This has the potential for profound implications for the control of parasitic diseases, including, but not exclusive to, widening host range, increased transmission potential and altered responses to drug therapy. Here, we present the challenging case example of haematobium group Schistosoma spp. hybrids in West Africa, a system involving multiple interacting parasites and multiple definitive hosts, in a region where zoonotic reservoirs of schistosomiasis were not previously considered to be of importance. We consider how existing mathematical model frameworks for schistosome transmission could be expanded and adapted to zoonotic hybrid systems, exploring how such model frameworks can utilize molecular and epidemiological data, as well as the complexities and challenges this presents. We also highlight the opportunities and value such mathematical models could bring to this and a range of similar multihost, multi and cross‐hybridizing parasites systems in our changing world

    Novel Insights in the faecal egg count reduction test for monitoring drug efficacy against gastrointestinal nematodes of veterinary importance

    Get PDF
    The faecal egg count reduction test (FECRT) is the method of choice to monitor anthelmintic efficacy against gastro-intestinal nematodes in livestock. Guidelines on how to conduct a FECRT are made available by the World Association for the Advancement of Veterinary Parasitology (WAAVP). Since the publication of these guidelines in the early 1990s, some limitations have been noted, including (i) the ignorance of host-parasite interactions that depend on animal and parasite species, (ii) their feasibility under field conditions, (iii) appropriateness of study design, and (iv) the low analytic sensitivity of the recommended faecal egg count (FEC) method. Therefore, the objective of the present study was to empirically assess the impact of the level of excretion and aggregation of FEC, sample size and detection limit of the FEC method on the sensitivity and specificity of the FECRT to detect reduced efficacy (<90% or <95%) and to develop recommendations for surveys on anthelmintic resistance. A simulation study was performed in which the FECRT (based on the arithmetic mean of grouped FEC of the same animals before and after drug administration) was conducted under varying conditions of mean FEC, aggregation of FEC (inversely correlated with k), sample size, detection limit and ‘true’ drug efficacies. Classification trees were built to explore the impact of the above factors on the sensitivity and specificity of detecting a truly reduced efficacy. For a reduced-efficacy threshold of 90%, most combinations resulted in a reliable detection of reduced and normal efficacy. For the reduced-efficacy threshold of 95% however, unreliable FECRT results were found when sample sizes <15 were combined with highly aggregated FEC (k = 0.25) and detection limits ≥5 EPG or when combined with detection limits ≥15 EPG. Overall, an increase in sample size and mean preDA FEC, and a decrease in detection limit improved the diagnostic accuracy. FECRT remained inconclusive under any evaluated condition for drug efficacies ranging from 87.5% to 92.5% for a reduced-efficacy-threshold of 90% and from 92.5% to 97.5% for a threshold of 95%. The results highlight that (i) the interpretation of this FECRT is affected by a complex interplay of factors, including the level of excretion and aggregation of FEC and (ii) the diagnostic value of FECRT to detect small reductions in efficacy is limited. This study, therefore, provides a framework allowing researchers to adapt their study design according to a wide range of field conditions, while ensuring a good diagnostic performance of the FECRT

    Introduction

    Get PDF
    corecore