2,188 research outputs found
Hard probes in heavy ion collisions at the LHC: heavy flavour physics
We present the results from the heavy quarks and quarkonia working group.
This report gives benchmark heavy quark and quarkonium cross sections for
and collisions at the LHC against which the rates can be compared in
the study of the quark-gluon plasma. We also provide an assessment of the
theoretical uncertainties in these benchmarks. We then discuss some of the cold
matter effects on quarkonia production, including nuclear absorption,
scattering by produced hadrons, and energy loss in the medium. Hot matter
effects that could reduce the observed quarkonium rates such as color screening
and thermal activation are then discussed. Possible quarkonium enhancement
through coalescence of uncorrelated heavy quarks and antiquarks is also
described. Finally, we discuss the capabilities of the LHC detectors to measure
heavy quarks and quarkonia as well as the Monte Carlo generators used in the
data analysis.Comment: 126 pages Latex; 96 figures included. Subgroup report, to appear in
the CERN Yellow Book of the workshop: Hard Probes in Heavy Ion Collisions at
the LHC. See also http://a.home.cern.ch/f/frixione/www/hvq.html for a version
with better quality for a few plot
On the electromagnetic energy resolution of Cherenkov-fiber calorimeters
Electromagnetic calorimeters which sample the Cherenkov radiation of shower particles in optical fibers operate in a markedly different manner from calorimeters which rely on the dE/dx of shower particles. The well-understood physics of electromagnetic shower development is applied to the case of Cherenkov-fiber calorimetry (also known as quartz fiber calorimetry) and the results of systematically performed studies are considered in detail to derive an understanding of the critical parameters involved in energy measurement using such calorimeters. A quantitative parameterization of Cherenkov-fiber calorimetry electromagnetic energy resolution is proposed and compared with existing experimental results
Quartz fiber calorimetry
The fundamentals of a new electromagnetic and hadronic sampling calorimetry based on the detection of Cherenkov light generated in quartz optical fibers are presented. Optical fibers transport light only in a selected angular range which results in a non-obvious and absolutely unique characteristic for this new technique: showers of very narrow visible energy. In addition, the technique is characterized by radiation resistance measured in Gigarads and nanosecond signal duration. Combined, these properties make quartz fiber calorimetry a very promising technique for high intensity heavy ion experiments and for the high pseudorapidity regions of high intensity collider experiments. The results of beam tests and simulations are used to illustrate the basic properties and peculiar characteristics of this recent development
Heavy Meson Production in Proton-Nucleus Reactions with Empirical Spectral Functions
We study the production of and mesons in reactions on the basis of empirical spectral functions. The high
momentum, high removal energy part of the spectral function is found to be
negligible in all cases close to the absolute threshold. Furthermore, the
two-step process () dominates the cross section at threshold energies in line with
earlier calculations based on the folding model.Comment: 18 pages, LaTeX, plus 14 postscript figures, submitted to Z. Phys.
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
A new measurement of J/psi suppression in Pb-Pb collisions at 158 GeV per nucleon
We present a new measurement of J/psi production in Pb-Pb collisions at 158
GeV/nucleon, from the data sample collected in year 2000 by the NA50
Collaboration, under improved experimental conditions with respect to previous
years. With the target system placed in vacuum, the setup was better adapted to
study, in particular, the most peripheral nuclear collisions with unprecedented
accuracy. The analysis of this data sample shows that the (J/psi)/Drell-Yan
cross-sections ratio measured in the most peripheral Pb-Pb interactions is in
good agreement with the nuclear absorption pattern extrapolated from the
studies of proton-nucleus collisions. Furthermore, this new measurement
confirms our previous observation that the (J/psi)/Drell-Yan cross-sections
ratio departs from the normal nuclear absorption pattern for semi-central Pb-Pb
collisions and that this ratio persistently decreases up to the most central
collisions.Comment: 19 pages, 10 figures. Submitted to Eur. Phys. J.
J/psi azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon
The J/ azimuthal distribution relative to the reaction plane has been
measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various
physical mechanisms related to charmonium dissociation in the medium created in
the heavy ion collision are expected to introduce an anisotropy in the
azimuthal distribution of the observed J/ mesons at SPS energies. Hence,
the measurement of J/ elliptic anisotropy, quantified by the Fourier
coefficient v of the J/ azimuthal distribution relative to the
reaction plane, is an important tool to constrain theoretical models aimed at
explaining the anomalous J/ suppression observed in Pb-Pb collisions. We
present the measured J/ yields in different bins of azimuthal angle
relative to the reaction plane, as well as the resulting values of the Fourier
coefficient v as a function of the collision centrality and of the
J/ transverse momentum. The reaction plane has been estimated from the
azimuthal distribution of the neutral transverse energy detected in an
electromagnetic calorimeter. The analysis has been performed on a data sample
of about 100 000 events, distributed in five centrality or p
sub-samples. The extracted v values are significantly larger than zero
for non-central collisions and are seen to increase with p.Comment: proceedings of HP08 conference corrected a typo in one equatio
Bottomonium and Drell-Yan production in p-A collisions at 450 GeV
The NA50 Collaboration has measured heavy-quarkonium production in p-A
collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here
results on the production of the Upsilon states and of high-mass Drell-Yan muon
pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the
measured yields are determined and compared with the results of other
fixed-target experiments and with the available theoretical estimates. Finally,
we also address some issues concerning the transverse momentum distributions of
the measured dimuons.Comment: 18 pages, 9 figures, to be published in Phys. Lett.
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
- …