487 research outputs found
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
A cascade of fully convolutional neural networks is proposed to segment
multi-modal Magnetic Resonance (MR) images with brain tumor into background and
three hierarchical regions: whole tumor, tumor core and enhancing tumor core.
The cascade is designed to decompose the multi-class segmentation problem into
a sequence of three binary segmentation problems according to the subregion
hierarchy. The whole tumor is segmented in the first step and the bounding box
of the result is used for the tumor core segmentation in the second step. The
enhancing tumor core is then segmented based on the bounding box of the tumor
core segmentation result. Our networks consist of multiple layers of
anisotropic and dilated convolution filters, and they are combined with
multi-view fusion to reduce false positives. Residual connections and
multi-scale predictions are employed in these networks to boost the
segmentation performance. Experiments with BraTS 2017 validation set show that
the proposed method achieved average Dice scores of 0.7859, 0.9050, 0.8378 for
enhancing tumor core, whole tumor and tumor core, respectively. The
corresponding values for BraTS 2017 testing set were 0.7831, 0.8739, and
0.7748, respectively.Comment: 12 pages, 5 figures. MICCAI Brats Challenge 201
Counting sub-multisets of fixed cardinality
This report presents an expression for the number of a multiset's
sub-multisets of a given cardinality as a function of the multiplicity of its
elements. This is also the number of distinct samples of a given size that may
be produced by sampling without replacement from a finite population
partitioned into subsets, in the case where items belonging to the same subset
are considered indistinguishable. Despite the generality of this problem, we
have been unable to find this result published elsewhere.Comment: 9 page
Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
In recent years, endomicroscopy has become increasingly used for diagnostic
purposes and interventional guidance. It can provide intraoperative aids for
real-time tissue characterization and can help to perform visual investigations
aimed for example to discover epithelial cancers. Due to physical constraints
on the acquisition process, endomicroscopy images, still today have a low
number of informative pixels which hampers their quality. Post-processing
techniques, such as Super-Resolution (SR), are a potential solution to increase
the quality of these images. SR techniques are often supervised, requiring
aligned pairs of low-resolution (LR) and high-resolution (HR) images patches to
train a model. However, in our domain, the lack of HR images hinders the
collection of such pairs and makes supervised training unsuitable. For this
reason, we propose an unsupervised SR framework based on an adversarial deep
neural network with a physically-inspired cycle consistency, designed to impose
some acquisition properties on the super-resolved images. Our framework can
exploit HR images, regardless of the domain where they are coming from, to
transfer the quality of the HR images to the initial LR images. This property
can be particularly useful in all situations where pairs of LR/HR are not
available during the training. Our quantitative analysis, validated using a
database of 238 endomicroscopy video sequences from 143 patients, shows the
ability of the pipeline to produce convincing super-resolved images. A Mean
Opinion Score (MOS) study also confirms this quantitative image quality
assessment.Comment: Accepted for publication on Medical Image Analysis journa
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
Deep-learning has proved in recent years to be a powerful tool for image
analysis and is now widely used to segment both 2D and 3D medical images.
Deep-learning segmentation frameworks rely not only on the choice of network
architecture but also on the choice of loss function. When the segmentation
process targets rare observations, a severe class imbalance is likely to occur
between candidate labels, thus resulting in sub-optimal performance. In order
to mitigate this issue, strategies such as the weighted cross-entropy function,
the sensitivity function or the Dice loss function, have been proposed. In this
work, we investigate the behavior of these loss functions and their sensitivity
to learning rate tuning in the presence of different rates of label imbalance
across 2D and 3D segmentation tasks. We also propose to use the class
re-balancing properties of the Generalized Dice overlap, a known metric for
segmentation assessment, as a robust and accurate deep-learning loss function
for unbalanced tasks
Enhancing surgical instrument segmentation:integrating vision transformer insights with adapter
PURPOSE: In surgical image segmentation, a major challenge is the extensive time and resources required to gather large-scale annotated datasets. Given the scarcity of annotated data in this field, our work aims to develop a model that achieves competitive performance with training on limited datasets, while also enhancing model robustness in various surgical scenarios.METHODS: We propose a method that harnesses the strengths of pre-trained Vision Transformers (ViTs) and data efficiency of convolutional neural networks (CNNs). Specifically, we demonstrate how a CNN segmentation model can be used as a lightweight adapter for a frozen ViT feature encoder. Our novel feature adapter uses cross-attention modules that merge the multiscale features derived from the CNN encoder with feature embeddings from ViT, ensuring integration of the global insights from ViT along with local information from CNN.RESULTS: Extensive experiments demonstrate our method outperforms current models in surgical instrument segmentation. Specifically, it achieves superior performance in binary segmentation on the Robust-MIS 2019 dataset, as well as in multiclass segmentation tasks on the EndoVis 2017 and EndoVis 2018 datasets. It also showcases remarkable robustness through cross-dataset validation across these 3 datasets, along with the CholecSeg8k and AutoLaparo datasets. Ablation studies based on the datasets prove the efficacy of our novel adapter module.CONCLUSION: In this study, we presented a novel approach integrating ViT and CNN. Our unique feature adapter successfully combines the global insights of ViT with the local, multi-scale spatial capabilities of CNN. This integration effectively overcomes data limitations in surgical instrument segmentation. The source code is available at: https://github.com/weimengmeng1999/AdapterSIS.git .</p
Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for brain tumor segmentation: BraTS 2020 challenge
Training a deep neural network is an optimization problem with four main
ingredients: the design of the deep neural network, the per-sample loss
function, the population loss function, and the optimizer. However, methods
developed to compete in recent BraTS challenges tend to focus only on the
design of deep neural network architectures, while paying less attention to the
three other aspects. In this paper, we experimented with adopting the opposite
approach. We stuck to a generic and state-of-the-art 3D U-Net architecture and
experimented with a non-standard per-sample loss function, the generalized
Wasserstein Dice loss, a non-standard population loss function, corresponding
to distributionally robust optimization, and a non-standard optimizer, Ranger.
Those variations were selected specifically for the problem of multi-class
brain tumor segmentation. The generalized Wasserstein Dice loss is a per-sample
loss function that allows taking advantage of the hierarchical structure of the
tumor regions labeled in BraTS. Distributionally robust optimization is a
generalization of empirical risk minimization that accounts for the presence of
underrepresented subdomains in the training dataset. Ranger is a generalization
of the widely used Adam optimizer that is more stable with small batch size and
noisy labels. We found that each of those variations of the optimization of
deep neural networks for brain tumor segmentation leads to improvements in
terms of Dice scores and Hausdorff distances. With an ensemble of three deep
neural networks trained with various optimization procedures, we achieved
promising results on the validation dataset of the BraTS 2020 challenge. Our
ensemble ranked fourth out of the 693 registered teams for the segmentation
task of the BraTS 2020 challenge.Comment: MICCAI 2020 BrainLes Workshop. Our method ranked fourth out of the
693 registered teams for the segmentation task of the BraTS 2020 challenge.
v2: Added some clarifications following reviewers' feedback (camera-ready
version
An Unsupervised Approach to Ultrasound Elastography with End-to-end Strain Regularisation
Quasi-static ultrasound elastography (USE) is an imaging modality that
consists of determining a measure of deformation (i.e.strain) of soft tissue in
response to an applied mechanical force. The strain is generally determined by
estimating the displacement between successive ultrasound frames acquired
before and after applying manual compression. The computational efficiency and
accuracy of the displacement prediction, also known as time-delay estimation,
are key challenges for real-time USE applications. In this paper, we present a
novel deep-learning method for efficient time-delay estimation between
ultrasound radio-frequency (RF) data. The proposed method consists of a
convolutional neural network (CNN) that predicts a displacement field between a
pair of pre- and post-compression ultrasound RF frames. The network is trained
in an unsupervised way, by optimizing a similarity metric be-tween the
reference and compressed image. We also introduce a new regularization term
that preserves displacement continuity by directly optimizing the strain
smoothness. We validated the performance of our method by using both ultrasound
simulation and in vivo data on healthy volunteers. We also compared the
performance of our method with a state-of-the-art method called OVERWIND [17].
Average contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of our
method in 30 simulation and 3 in vivo image pairs are 7.70 and 6.95, 7 and
0.31, respectively. Our results suggest that our approach can effectively
predict accurate strain images. The unsupervised aspect of our approach
represents a great potential for the use of deep learning application for the
analysis of clinical ultrasound data.Comment: Accepted at MICCAI 202
ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation
Automatic segmentation of lung lesions associated with COVID-19 in CT images
requires large amount of annotated volumes. Annotations mandate expert
knowledge and are time-intensive to obtain through fully manual segmentation
methods. Additionally, lung lesions have large inter-patient variations, with
some pathologies having similar visual appearance as healthy lung tissues. This
poses a challenge when applying existing semi-automatic interactive
segmentation techniques for data labelling. To address these challenges, we
propose an efficient convolutional neural networks (CNNs) that can be learned
online while the annotator provides scribble-based interaction. To accelerate
learning from only the samples labelled through user-interactions, a
patch-based approach is used for training the network. Moreover, we use
weighted cross-entropy loss to address the class imbalance that may result from
user-interactions. During online inference, the learned network is applied to
the whole input volume using a fully convolutional approach. We compare our
proposed method with state-of-the-art using synthetic scribbles and show that
it outperforms existing methods on the task of annotating lung lesions
associated with COVID-19, achieving 16% higher Dice score while reducing
execution time by 3 and requiring 9000 lesser scribbles-based labelled
voxels. Due to the online learning aspect, our approach adapts quickly to user
input, resulting in high quality segmentation labels. Source code for ECONet is
available at: https://github.com/masadcv/ECONet-MONAILabel.Comment: Accepted at MIDL 202
- …