299 research outputs found

    Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments

    Get PDF
    This is the author accepted manuscript. The final version is available from European Geosciences Union (EGU) via the DOI in this record.Land-use and land-cover change (LULCC) represents one of the key drivers of global environmental change. However, the processes and drivers of anthropogenic land-use activity are still overly simplistically implemented in terrestrial biosphere models (TBMs). The published results of these models are used in major assessments of processes and impacts of global environmental change, such as the reports of the Intergovernmental Panel on Climate Change (IPCC). Fully coupled models of climate, land use and biogeochemical cycles to explore land use-climate interactions across spatial scales are currently not available. Instead, information on land use is provided as exogenous data from the land-use change modules of integrated assessment models (IAMs) to TBMs. In this article, we discuss, based on literature review and illustrative analysis of empirical and modeled LULCC data, three major challenges of this current LULCC representation and their implications for land use-climate interaction studies: (I) provision of consistent, harmonized, land-use time series spanning from historical reconstructions to future projections while accounting for uncertainties associated with different land-use modeling approaches, (II) accounting for sub-grid processes and bidirectional changes (gross changes) across spatial scales, and (III) the allocation strategy of independent land-use data at the grid cell level in TBMs. We discuss the factors that hamper the development of improved land-use representation, which sufficiently accounts for uncertainties in the land-use modeling process. We propose that LULCC data-provider and user communities should engage in the joint development and evaluation of enhanced LULCC time series, which account for the diversity of LULCC modeling and increasingly include empirically based information about sub-grid processes and land-use transition trajectories, to improve the representation of land use in TBMs. Moreover, we suggest concentrating on the development of integrated modeling frameworks that may provide further understanding of possible land-climate-society feedbacks.The research in this paper has been supported by the European Research Council under the European Union’s Seventh Framework Programme project LUC4C (Grant No. 603542), ERC grant GLOLAND (No. 311819) and BiodivERsA project TALE (No. 832.14.006) funded by the Dutch National Science Foundation (NWO). This research contributes to the Global Land Project (www.globallandproject.org). This is paper number 26 of the Birmingham Institute of Forest Research

    Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France)

    Get PDF
    International audienceOver the last decades and centuries, European mountain landscapes have experienced substantial transformations. Natural and anthropogenic LULC changes (land use and land cover changes), especially agro-pastoral activities, have directed influenced the spatial organization and composition of European mountain landscapes. For the past 60 years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population. Stakeholders, to better anticipate future changes, need spatially and temporally explicit models to identiy areas at risk of land change and possible abandonment. This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains, based on historical LULC trands and a range of future socio-economic drivers. The proposed methodology considers local specificities of Pyrenan valleys, sub-regional climate and topographical properties, and regional economic policies. Results indicate that some regions are projected to face strong abandonment, regardless of scenario conditions. Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive (agricultural and/or pastoral) production and profitability. The combination of the results for the four scenarios allows assessements of where encroachment (e.g. colonization by shrublands) and reforestation are the most probable. This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions

    Monitoring and modelling landscape dynamics

    Get PDF
    International audienceChanges in land cover and land use are among the most pervasive and important sources of recent alterations of the Earth's land surface.This special issue also presents new directions in modelling landscape dynamics. Agent-based models have primarily been used to simulate local land use and land cover changes processes with a focus on decision making (Le 2008; Matthews et al. 2007; Parker et al. 2003; Bousquet and Le Page 2001)

    A comparison of baseline methodologies for 'Reducing Emissions from Deforestation and Degradation'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A mechanism for emission reductions from deforestation and degradation (REDD) is very likely to be included in a future climate agreement. The choice of REDD baseline methodologies will crucially influence the environmental and economic effectiveness of the climate regime. We compare three different historical baseline methods and one innovative dynamic model baseline approach to appraise their applicability under a future REDD policy framework using a weighted multi-criteria analysis.</p> <p>Results</p> <p>The results show that each baseline method has its specific strengths and weaknesses. Although the dynamic model allows for the best environmental and for comparatively good economic performance, its high demand for data and technical capacity limit the current applicability in many developing countries.</p> <p>Conclusion</p> <p>The adoption of a multi-tier approach will allow countries to select the baseline method best suiting their specific capabilities and data availability while simultaneously ensuring scientific transparency, environmental effectiveness and broad political support.</p

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand

    Get PDF
    Rapid deforestation has occurred in northern Thailand over the last few decades and it is expected to continue. The government has implemented conservation policies aimed at maintaining forest cover of 50% or more and promoting agribusiness, forestry, and tourism development in the region. The goal of this paper was to analyze the likely effects of various directions of development on the region. Specific objectives were (1) to forecast land-use change and land-use patterns across the region based on three scenarios, (2) to analyze the consequences for biodiversity, and (3) to identify areas most susceptible to future deforestation and high biodiversity loss. The study combined a dynamic land-use change model (Dyna-CLUE) with a model for biodiversity assessment (GLOBIO3). The Dyna-CLUE model was used to determine the spatial patterns of land-use change for the three scenarios. The methodology developed for the Global Biodiversity Assessment Model framework (GLOBIO 3) was used to estimate biodiversity intactness expressed as the remaining relative mean species abundance (MSA) of the original species relative to their abundance in the primary vegetation. The results revealed that forest cover in 2050 would mainly persist in the west and upper north of the region, which is rugged and not easily accessible. In contrast, the highest deforestation was expected to occur in the lower north. MSA values decreased from 0.52 in 2002 to 0.45, 0.46, and 0.48, respectively, for the three scenarios in 2050. In addition, the estimated area with a high threat to biodiversity (an MSA decrease >0.5) derived from the simulated land-use maps in 2050 was approximately 2.8% of the region for the trend scenario. In contrast, the high-threat areas covered 1.6 and 0.3% of the region for the integrated-management and conservation-oriented scenarios, respectively. Based on the model outcomes, conservation measures were recommended to minimize the impacts of deforestation on biodiversity. The model results indicated that only establishing a fixed percentage of forest was not efficient in conserving biodiversity. Measures aimed at the conservation of locations with high biodiversity values, limited fragmentation, and careful consideration of road expansion in pristine forest areas may be more efficient to achieve biodiversity conservation. © 2010 Springer Science+Business Media, LLC

    Exploring subtle land use and land cover changes: a framework for future landscape studies

    Get PDF
    UMR AMAP, équipe 3International audienceLand cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
    corecore