18 research outputs found

    Fabry-Pérot resonant avalanche-mode silicon LEDs for tunable narrow-band emission

    No full text
    We report on the effect of Fabry-Pérot (FP) resonance on hot-carrier electroluminescence (EL) spectra and the optical power efficiencies of silicon (Si) avalanche-mode (AM) LEDs in the wavelength range from 500 nm to 950 nm. The LEDs, fabricated in a silicon-on-insulator photonics technology, consist of symmetric p-n junctions placed within a 0.21 µm thick Si micro-ring of varying width and radius. We show that the peak wavelength in the EL-spectra can be tuned within a range of 100 nm by varying the ring width from 0.16 µm to 0.30 µm, which is explained by FP resonance. The measured EL-spectra features relatively narrow bands (with a spectral width of ∼50 nm) with high intensities compared to conventional Si AMLEDs. By varying the ring radius and using a high doping level, we obtain a record high optical power efficiency of 3.2×10−5. Our work is a breakthrough in engineering the EL spectrum of Si, foreseen to benefit the performance of Si-integrated optical interconnects and sensors.Dynamics of Micro and Nano System

    Optical absorption sensing with dual-spectrum silicon LEDs in SOI-CMOS technology

    No full text
    Silicon p-n junction diodes emit low-intensity, broad-spectrum light near 1120 nm in forward bias and between 400-900 nm in reverse bias (avalanche). For the first time, we experimentally achieve optical absorption sensing of pigment in solution with silicon micro LEDs designed in a standard silicon-on-insulator CMOS technology. By driving a single LED in both forward and avalanche modes of operation, we steer it's electroluminescent spectrum between visible and near-infrared (NIR). We then characterize the vertical optical transmission of both visible and NIR light from the LED through the same micro-droplet specimen to a vertically mounted discrete silicon photodiode. The effective absorption coefficient of carmine solution in glycerol at varying concentrations were extracted from the color ratio in optical coupling. By computing the LED-specific molar absorption coefficient of carmine, we estimate the concentration (∼0.040 mol L-1) and validate the same with a commercial spectrophotometer (∼0.030 mol L-1). With a maximum observed sensitivity of ∼1260 cm-1mol-1L, the sensor is a significant step forward towards low-cost CMOS-integrated optical sensors with silicon LED as the light source intended for biochemical analyses in food sector and plant/human health. Accepted Author ManuscriptDynamics of Micro and Nano System

    Optical sensing of chlorophyll(in) with dual-spectrum Si LEDs in SOI-CMOS technology

    No full text
    Small and low-cost chlorophyll sensors are popular in agricultural sector and food-quality control.Combining such sensors with silicon CMOS electronics is challenged by the absence of silicon-integrated light-sources.We experimentally achieve optical absorption sensing of chlorophyll based pigments with silicon (Si) micro light-emitting diodes (LED) as light-source, fabricated in a standard SOI-CMOS technology.By driving a Si LED in both forward and avalanche modes of operation,we steer its electroluminescentspectrum between visible (400-900 nm) and near-infrared (1120 nm). For detection of chlorophyll in solution phase, the dualspectrum light from the LED propagates vertically through glycerol micro-droplets containing sodium copper chlorophyllin at varying relative concentrations. The transmitted light is detected via an off-chip Si photodiode. The visible to near-infrared color ratio (COR) of the photocurrent yields the effective absorption coefficient. We introduce the LED-specificmolar absorption coefficient as ametric to compute the absolute pigment concentration (0.019 ± 0.006 mol L-1) and validate the results by measurements with a hybrid spectrophotometer. With the same sensor, we also show noninvasive monitoring of chlorophyll in plant leaves. COR sensitivities ∼3.9×104\sim 3.9 \times 10^{4} mol-1L and ∼5.3×104\sim 5.3 \times 10^{4} mol-1L are obtained for two leaf species, where light from the LED propagates diffusely through the thickness of the leaf prior to detection by the photodiode. Our work demonstrates the feasibility of realizing fully CMOS-integrated optical sensors for biochemical analyses in food sector and plant/human health.Accepted Author ManuscriptDynamics of Micro and Nano System

    Evaporation induced acoustic emissions in microfluidic vessels

    No full text
    Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as acoustic emissions (AEs). The exact origin of these pulses and their damping mechanisms are still subjects of debate. Here, we study the characteristics of such AEs during evaporation of water from artificial microfluidic vessels, inspired by the physiology of vascular water-transport in plants. From the extracted settling times of the recorded AEs, we identify three pulse types and attribute their origins to bubble formation, snap-off events and rapid pore invasion. We also show that the resonance frequencies between 10 and 70 kHz present in specific pulse types decrease with increasing vessel radius (ranging from 0.25 to 1.0 mm) and length (ranging from 2.5 to 10.0 mm). Our findings provide insight into evaporation-induced AEs from microfluidic systems, and their potential use in non-invasive inspection or vascular health monitoring.Dynamics of Micro and Nano System

    Avalanche-mode Si light-emitting transistor for narrow-band emission near 760 nm

    Get PDF
    We report an avalanche-mode light-emitting transistor (AMLET) in silicon (Si), based on a lateral bipolar junction, which emits light near 760 nm optical wavelength with a record low bandwidth of 38 nm. The AMLET, designed in a CMOS-compatible silicon-on-insulator (SOI) photonics platform, is optically confined within a 0.21 ∼\μ m thick SOI layer, which forms a Fabry-Pérot (FP) resonator perpendicular to the Si surface. Light is emitted from the reverse biased emitter-base junction via phonon-assisted hot carrier recombination and, additionally, minority carriers are injected via the forward-biased Base-Collector junction. The combination of injection from collector terminal through a narrow base and FP optical resonance, yields a high optical power efficiency of 4.3\× 10-6 at V BC=0.8 V and V EB=10 V. Our work opens new possibilities in spectral-engineering of Si light-emitters, which could boost performance of all-Si optical interconnects and sensors.Accepted Author ManuscriptDynamics of Micro and Nano System

    Nonequilibrium thermodynamics of acoustic phonons in suspended graphene

    No full text
    Recent theory has predicted large temperature differences between the in-plane [longitudinal (LA) and transverse (TA)] and out-of-plane [flexural (ZA)] acoustic phonon baths in locally heated suspended graphene. To verify these predictions, and their implications for understanding the nonequilibrium thermodynamics of two-dimensional (2D) materials, experimental techniques are needed. Here, we present a method to determine the acoustic phonon bath temperatures from the frequency-dependent mechanical response of suspended graphene to a power-modulated laser. The mechanical motion reveals two counteracting contributions to the thermal expansion force, that are attributed to fast positive thermal expansion by the in-plane phonons and slower negative thermal expansion by the out-of-plane phonons. The magnitude of the two forces reveals that the in-plane and flexural acoustic phonons are at very different temperatures in the steady state, with typically observed values of the ratio ΔTLA+TA/ΔTZA between 0.2 and 3.7. These deviations from the generally used local thermal equilibrium assumption (ΔTLA+TA=ΔTZA) can affect the experimental analysis of the thermal properties of 2D materials.QN/Steeneken LabDynamics of Micro and Nano SystemsQN/Blanter GroupQN/van der Zant La

    High-Speed Tapping Mode AFM Utilizing Recovery of Tip-Sample Interaction

    No full text
    We propose to use the State Estimation by Sum-of-Norms Regularisation (STATESON-)algorithm for recovering the tip-sample interaction in high-speed tapping mode atomic force microscopy (AFM). This approach enables accurate sample height estimation for each independent cantilever oscillation period, provided that the tip-sample interaction dominates the noise. The entire course of the cantilever deflection signal is compared to a modelled counterpart in subsequent convex minimisations, such that the sparse tip-sample interaction can be recovered. Afterwards, the sample height is determined using the minimum smoothed cantilever deflection per cantilever oscillation period. Results from simulation experiments are in favour of the proposed approach as it consistently reveals sharp edges in sample height, as opposed to both the conventional and a closely related existing approach. However, the non-processed cantilever deflection provided most accurate sample height estimation. It is recommended to implement the STATESON-algorithm in the form of a filter to use it in feedback control of the scanner and cantilever excitation.Team Michel VerhaegenTeam Carlas SmithDynamics of Micro and Nano SystemsQN/Afdelingsburea

    Phonon scattering at kinks in suspended graphene

    No full text
    Recent experiments have shown surprisingly large thermal time constants in suspended graphene ranging from 10 to 100 ns in drums with a diameter ranging from 2 to 7 μm. The large time constants and their scaling with diameter points toward a thermal resistance at the edge of the drum. However, an explanation of the microscopic origin of this resistance is lacking. Here, we show how phonon scattering at a kink in the graphene, e.g., formed by sidewall adhesion at the edge of the suspended membrane, can cause a large thermal time constant. This kink strongly limits the fraction of flexural phonons that cross the suspended graphene edge, which causes a thermal resistance at its boundary. Our model predicts thermal time constants that are of the same order of magnitude as experimental data and shows a similar dependence on the circumference. Furthermore, the model predicts the relative in-plane and out-of-plane phonon contributions to graphene's thermal expansion force, in agreement with experiments. We thus show an unconventional thermal boundary resistance which occurs solely due to strong deformations within a two-dimensional material.QN/Steeneken LabQN/Blanter GroupQN/van der Zant LabDynamics of Micro and Nano System

    Acoustic subsurface-atomic force microscopy: Three-dimensional imaging at the nanoscale

    No full text
    The development of acoustic subsurface atomic force microscopy, which promises three-dimensional imaging with single-digit nanometer resolution by the introduction of ultrasound actuations to a conventional atomic force microscope, has come a long way since its inception in the early 1990s. Recent advances provide a quantitative understanding of the different experimentally observed contrast mechanisms, which paves the way for future applications. In this Perspective, we first review the different subsurface atomic force microscope modalities: ultrasonic force microscopy, atomic force acoustic microscopy, heterodyne force microscopy, mode-synthesizing atomic force microscopy, and near-field picosecond ultrasonic microscopy. Then, we highlight and resolve a debate existing in the literature on the importance of the chosen ultrasound excitation frequencies with respect to the resonance frequencies of the cantilever and the observed contrast mechanisms. Finally, we discuss remaining open problems in the field and motivate the importance of new actuators, near-field picosecond ultrasonics, and integration with other techniques to achieve multi-functional non-destructive three-dimensional imaging at the nanoscale. Dynamics of Micro and Nano System

    Ultrasound Pulse Emission Spectroscopy Method to Characterize Xylem Conduits in Plant Stems

    No full text
    Although it is well known that plants emit acoustic pulses under drought stress, the exact origin of the waveform of these ultrasound pulses has remained elusive. Here, we present evidence for a correlation between the characteristics of the waveform of these pulses and the dimensions of xylem conduits in plants. Using a model that relates the resonant vibrations of a vessel to its dimension and viscoelasticity, we extract the xylem radii from the waveforms of ultrasound pulses and show that these are correlated and in good agreement with optical microscopy. We demonstrate the versatility of the method by applying it to shoots of ten different vascular plant species. In particular, for Hydrangea quercifolia, we further extract vessel element lengths with our model and compare them with scanning electron cryomicroscopy. The ultrasonic, noninvasive characterization of internal conduit dimensions enables a breakthrough in speed and accuracy in plant phenotyping and stress detection.Dynamics of Micro and Nano SystemsQN/Steeneken La
    corecore