7 research outputs found

    In Vitro Iron Availability from Insects and Sirloin Beef

    Get PDF

    Protective role of histidine supplementation against oxidative stress damage in the management of anemia of chronic kidney disease

    Get PDF
    Anemia is a major health condition associated with chronic kidney disease (CKD). A key underlying cause of this disorder is iron deficiency. Although intravenous iron treatment can be beneficial in correcting CKD-associated anemia, surplus iron can be detrimental and cause complications. Excessive generation of reactive oxygen species (ROS), particularly by mitochondria, leads to tissue oxidation and damage to DNA, proteins, and lipids. Oxidative stress increase in CKD has been further implicated in the pathogenesis of vascular calcification. Iron supplementation leads to the availability of excess free iron that is toxic and generates ROS that is linked, in turn, to inflammation, endothelial dysfunction, and cardiovascular disease. Histidine is indispensable to uremic patients because of the tendency toward negative plasma histidine levels. Histidine-deficient diets predispose healthy subjects to anemia and accentuate anemia in chronic uremic patients. Histidine is essential in globin synthesis and erythropoiesis and has also been implicated in the enhancement of iron absorption from human diets. Studies have found that L-histidine exhibits antioxidant capabilities, such as scavenging free radicals and chelating divalent metal ions, hence the advocacy for its use in improving oxidative stress in CKD. The current review advances and discusses evidence for iron-induced toxicity in CKD and the mechanisms by which histidine exerts cytoprotective functions

    The role of gsh in intracellular iron trafficking

    No full text
    Evidence is reviewed for the role of glutathione in providing a ligand for the cytosolic iron pool. The possibility of histidine and carnosine forming ternary complexes with iron(II)glutathione is discussed and the physiological significance of these interactions considered. The role of carnosine in muscle, brain, and kidney physiology is far from established and evidence is presented that the iron(II)-binding capability of carnosine relates to this role

    Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis

    Get PDF
    Ferroptosis is a form of programmed cell death that is characterized by lipid peroxidation and is inducible by iron and the accumulation of reactive oxygen species (ROS). It is triggered by erastin but inhibited by antioxidants such as α-tocopherol, β-carotene, polyphenols, and iron chelators such as deferoxamine (DFO), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA). This study investigated the protective effects of two polyphenols, curcumin and (−)- epigallocatechin-3-gallate (EGCG), against iron loading and erastin-mediated ferroptosis in MIN6 cells. Cells were treated with polyphenols before exposure to iron-induced oxidative stress comprising of 20 μmol/L of 8-hydroxyquinoline (8HQ) and 50 μmol/L of ferric ammonium citrate, (FAC) (8HQ+FAC) or Fenton reaction substrate (FS) (30 μmol/L of FeSO4 and 0.5 of mmol/L H2O2) and 20 μmol/L erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively-coupled plasma mass spectrometry (ICP-MS), glutathione and lipid peroxidation were assayed with commercially-available kits. Curcumin and EGCG both significantly protected pancreatic cells against iron-induced oxidative damage. Moreover, both compounds also protected against erastin-induced ferroptosis in pancreatic cells. The polyphenols enhanced cell viability in erastin-treated MIN6 cells in a dose- and time-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) degradation and lipid peroxidation (p < 0.05) compared to cells that were protected by pre-treatment with curcumin or EGCG. Taken together, the data identify curcumin and EGCG as novel ferroptosis inhibitors, which might exert their protective effects by acting as iron chelators and preventing GSH depletion, GPX4 inactivation, and lipid peroxidation in MIN6 cells. The implications of the findings on the effects of iron overload and ferroptosis represent a potential therapeutic strategy against iron-related diseases

    Ferulic acid protects HepG2 cells and mouse liver from iron-induced damage

    Get PDF
    Liver as iron storage organ is particularly susceptible to oxidative stress-induced injury from excess iron. Thus, antioxidant therapies are often used to reverse oxidative damage and protect cells and tissues. This study investigated the protective effects of phenolic acids; ferulic acid (FA) and its metabolite, ferulic acid 4-O-sulfate disodium salt (FAS) against oxidative stress under iron overload conditions in mouse and HepG2 cells. Cells were exposed to FA or FAS and then treated with iron-induced oxidative stress complex of 50 & mu;mol/L FAC and 20 & mu;mol/L of 8-hydroxyquinoline 8HQ (8HQ-FAC). Iron dextran was injected intraperitoneally on alternate days for 10 days to induce the iron overload condition in BALB/c mice. The study revealed that the phenolic acids were protective against ROS production, lipid peroxidation and antioxidant depletion in HepG2 cells and liver tissues of BALB/c mice during iron-induced oxidative stress. The protective function of phenolic acids was achieved by the transcriptional activation of nuclear factor erythroid-2-related factor 2 (Nrf2) to regulate antioxidant genes. In conclusion, the study provides evidence that FA has the potential as a therapeutic agent against iron-related diseases such as T2D.Turkish Government Ministry of National Educatio
    corecore