18 research outputs found

    Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests

    No full text
    The fibers extracted from the sugarcane bagasse have been investigated as possible reinforcement for polymer matrix composites. The use of these composites in engineering applications, associated with conditions such as ballistic armor, requires information on the impact toughness. In the present work, Charpy tests were performed in ASTM standard specimens of polyester matrix composites, reinforced with 10, 20 and 30 vol% of continuous and aligned sugarcane bagasse fibers, in order to evaluate the impact energy. Within the standard deviation, the composite absorbed impact energy increased with the volume fraction of sugarcane bagasse fiber. This toughness performance was found by scanning electron microscopy to be associated with the fiber/matrix delamination. Keywords: Sugarcane bagasse fiber, Polyester composites, Charpy test, Impact toughnes

    Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target

    No full text
    Multilayered armor systems (MAS) with a front ceramic layer backed by a relatively unknown Amazonian guaruman fiber-reinforced (Ischnosiphon koem) epoxy composites, as second layer, were for the first time ballistic tested against the threat of 7.62 mm rifle ammunition. The amount of 30 vol% guaruman fibers was investigated in three distinct configurations: (i) continuous aligned, (ii) 0–90° cross-laid, and (iii) short-cut randomly dispersed. Additionally, single-target ballistic tests were also carried out in the best MAS-performed composite with cross-laid guaruman fibers against .22 caliber ammunition. The results disclosed that all composites as MAS second layer attended the US NIJ standard with corresponding penetration depth of (i) 32.9, (ii) 27.5, and (iii) 29.6 mm smaller than the lethal limit of 44 mm in a clay witness simulating a personal body. However, the continuous aligned guaruman fiber composite lost structural integrity by delamination after the 7.62 projectile impact. By contrast, the composite with cross-laid guaruman fibers kept its integrity for subsequent shootings as recommended by the standard. The single-target tests indicated a relatively higher limit velocity for .22 caliber projectile perforation, 255 m/s, and absorbed energy of 106 J for the cross-laid guaruman fibers, which are superior to corresponding results for other less known natural fiber epoxy composites

    Effect of Chemical Treatment and Length of Raffia Fiber (Raphia vinifera) on Mechanical Stiffening of Polyester Composites

    No full text
    In recent decades, the unique characteristics of natural fibers have promoted their use as reinforcement in polymeric composites. This is verified in several industrial sectors, from packaging to automotive and civil construction. Among the natural fibers, the raffia fiber extracted from the palm tree Raphia vinifera and introduced in the Amazon region a long time ago; started to be considered for the production of polymeric composites only in recent years. For the first time, the effect of raffia fiber length and its alkali treatment on the mechanical properties of a polymer composite was disclosed. Tensile tests were performed in composites with raffia fibers randomly dispersed into terephthalate-based unsaturated polyester resin. The results showed an increase in the Young’s moduli, confirmed by ANOVA, for the composite with both untreated and alkali-treated fibers in comparison to the plain polyester, which characterizes a stiffening effect. The composites with alkali treated fibers exhibited similar tensile strength values for all lengths; however, their strengths are lower than those for the untreated condition due to a weak raffia fiber/polyester matrix adhesion. Therefore, this work fills the current knowledge gap on raffia fiber incorporation in polyester matrix and valorizes this abundant Brazilian resource, providing additional information towards the use of raffia fiber in polymer composites

    Ubim Fiber (Geonoma baculífera): A Less Known Brazilian Amazon Natural Fiber for Engineering Applications

    No full text
    The production of synthetic materials generally uses non-renewable forms of energy, which are highly polluting. This is driving the search for natural materials that offer properties similar to synthetic ones. In particular, the use of natural lignocellulosic fibers (NLFs) has been investigated since the end of 20th century, and is emerging strongly as an alternative to replace synthetic components and reinforce composite materials for engineering applications. NLFs stand out in general as they are biodegradable, non-polluting, have comparatively less CO2 emission and are more economically viable. Furthermore, they are lighter and cheaper than synthetic fibers, and are a possible replacement as composite reinforcement with similar mechanical properties. In the present work, a less known NLF from the Amazon region, the ubim fiber (Geonoma bacculifera), was for the first time physically characterized by X-ray diffraction (XRD). Fiber density was statistically analyzed by the Weibull method. Using both the geometric method and the Archimedes’ technique, it was found that ubim fiber has one of the lowest densities, 0.70–0.73 g/cm3, for NLFs already reported in the literature. Excluding the porosity, however, the absolute density measured by pycnometry was relatively higher. In addition, the crystallinity index, of 83%, microfibril angle, of 7.42–7.49°, and ubim fiber microstructure of lumen and channel pores were also characterized by scanning electron microscopy. These preliminary results indicate a promising application of ubim fiber as eco-friendly reinforcement of civil construction composite material

    Ubim Fiber (<i>Geonoma baculífera</i>): A Less Known Brazilian Amazon Natural Fiber for Engineering Applications

    No full text
    The production of synthetic materials generally uses non-renewable forms of energy, which are highly polluting. This is driving the search for natural materials that offer properties similar to synthetic ones. In particular, the use of natural lignocellulosic fibers (NLFs) has been investigated since the end of 20th century, and is emerging strongly as an alternative to replace synthetic components and reinforce composite materials for engineering applications. NLFs stand out in general as they are biodegradable, non-polluting, have comparatively less CO2 emission and are more economically viable. Furthermore, they are lighter and cheaper than synthetic fibers, and are a possible replacement as composite reinforcement with similar mechanical properties. In the present work, a less known NLF from the Amazon region, the ubim fiber (Geonoma bacculifera), was for the first time physically characterized by X-ray diffraction (XRD). Fiber density was statistically analyzed by the Weibull method. Using both the geometric method and the Archimedes’ technique, it was found that ubim fiber has one of the lowest densities, 0.70–0.73 g/cm3, for NLFs already reported in the literature. Excluding the porosity, however, the absolute density measured by pycnometry was relatively higher. In addition, the crystallinity index, of 83%, microfibril angle, of 7.42–7.49°, and ubim fiber microstructure of lumen and channel pores were also characterized by scanning electron microscopy. These preliminary results indicate a promising application of ubim fiber as eco-friendly reinforcement of civil construction composite material

    Comparison of Young’s Modulus of Continuous and Aligned Lignocellulosic Jute and Mallow Fibers Reinforced Polyester Composites Determined Both Experimentally and from Theoretical Prediction Models

    No full text
    Mechanical properties of composites reinforced with lignocellulosic fibers have been researched in recent decades. Jute and mallow fibers are reinforcement alternatives, as they can contribute to increase the mechanical strength of composite materials. The present work aims to predict the Young’s modulus with application of continuous and aligned lignocellulosic fibers to be applied as reinforcement in polyester matrix. Fibers were manually separated and then arranged and aligned in the polyester matrix. Composites with addition 5, 15, and 25 vol% jute and mallow fibers were produced by vacuum-assisted hand lay-up/vaccum-bagging procedure. Samples were tested in tensile and the tensile strength, elasticity modulus, and deformation were determined. Results showed that the intrinsic Young’s modulus of the fibers was set at values around 17.95 and 11.72 GPa for jute and mallow fibers, respectively. Statistical analysis showed that composites reinforced with 15 and 25 vol% jute and mallow presented the highest values of tensile strength and Young’s modulus. The incorporation of 25 vol% of jute and mallow fibers increased the matrix Young’s modulus by 534% and 353%, respectively, effectively stiffening the composite material. Prediction models presented similar values for the Young’s modulus, showing that jute and mallow fibers might be used as potential reinforcement of polymeric matrice
    corecore