16 research outputs found
Synthesis Characterization of Nanostructured ZnCo2O4 with High Sensitivity to CO Gas
In this work, nanostructured ZnCo2O4 was synthesized via a microwave-assisted colloidal method, and its application as gas sensor for the detection of CO was studied. Typical diffraction peaks corresponding to the cubic ZnCo2O4 spinel structure were identified at calcination temperature of 500°C by X-ray powder diffraction. A high degree of porosity in the surface of the nanostructured powder of ZnCo2O4 was observed by scanning electron microscopy and transmission electron microscopy, faceted nanoparticles with a pockmarked structure were clearly identified. The estimated average particle size was approximately 75 nm. The formation of ZnCo2O4 material was also confirmed by Raman characterization. Pellets fabricated with nanostructured powder of ZnCo2O4 were tested as sensors using CO gas at different concentrations and temperatures. A high sensitivity value of 305â300 ppm of CO was measured at 300°C, indicating that nanostructured ZnCo2O4 had a high performance in the detection of CO
An Alternative Approach for the Synthesis of Zinc Aluminate Nanoparticles for CO and Propane Sensing Applications
We implemented a simple and inexpensive aqueous sol-gel process to synthesize ZnAl2O4 nanoparticles to study its potential application as a gas sensor. Compared to traditional ceramic methods, the synthesis was conducted at lower temperatures and reaction times (5 h from 200 °C). The crystalline evolution of the oxide was investigated. The effect of the calcination temperature (200–1000 °C) on the crystallites’ size (16–29 nm) and the ZnAl2O4 powder’s surface morphology was also analyzed. Measurements confirmed the formation of bar-shaped granules (~0.35 μm) made up of nanoparticles (~23 nm). The surface area of the powders was 60 m2/g. Pellets were made from the powders and tested in sensing carbon monoxide and propane gases, showing a high sensitivity to such gases. The sensor’s response increased with increasing temperature (25–300 °C) and gas concentration (0–300 ppm). The oxide showed a higher response in propane than in carbon monoxide. We concluded that the ZnAl2O4 is a good candidate for gas sensing applications
An Alternative Approach for the Synthesis of Zinc Aluminate Nanoparticles for CO and Propane Sensing Applications
We implemented a simple and inexpensive aqueous sol-gel process to synthesize ZnAl2O4 nanoparticles to study its potential application as a gas sensor. Compared to traditional ceramic methods, the synthesis was conducted at lower temperatures and reaction times (5 h from 200 °C). The crystalline evolution of the oxide was investigated. The effect of the calcination temperature (200â1000 °C) on the crystallitesâ size (16â29 nm) and the ZnAl2O4 powderâs surface morphology was also analyzed. Measurements confirmed the formation of bar-shaped granules (~0.35 ÎŒm) made up of nanoparticles (~23 nm). The surface area of the powders was 60 m2/g. Pellets were made from the powders and tested in sensing carbon monoxide and propane gases, showing a high sensitivity to such gases. The sensorâs response increased with increasing temperature (25â300 °C) and gas concentration (0â300 ppm). The oxide showed a higher response in propane than in carbon monoxide. We concluded that the ZnAl2O4 is a good candidate for gas sensing applications
Toxic Gas Detectors Based on a MnSb<sub>2</sub>O<sub>6</sub> Oxide Chemical Sensor
We synthesized the semiconductor oxide MnSb2O6 through a wet chemical process assisted by low-power microwave radiation. A gas-sensitive sensor was elaborated from the MnSb2O6 powders obtained by calcination at 600°C. The sensor was electrically characterized in static CO and C3H8 atmospheres by measuring direct current signals at 100, 200, and 300°C. The toxic gasesâ concentrations were 1, 5, 50, 100, 200, 300, 400, and 500 ppm of C3H8; and 1, 5, 50, 100, 200, and 300 ppm of CO. From the MnSb2O6âs electrical resistance results, a sensorâs operational point and a low-cost analog circuit were proposed, obtaining two new prototypes: one for detecting C3H8 and a second one for detecting CO. We selected the response at 200°C and 5 ppm for both cases. Notably, this concentration (5 ppm) is selectable with a calibration resistance, generating an alarm signal of â11.3V at a supply voltage of 120 V AC. The toxic gas detectors showed excellent functionality. The resistive sensor showed high sensitivity and good electrical response, while the analog circuit presented a rapid response. Due to the operating temperature employed (200°C), these devices could find practical applications, for example, exothermic generators and heaters
Low-Finesse FabryâPĂ©rot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location
Interferometry sensors are frequently analyzed by applying the Fourier transform because the transformation separates all frequency components of its signal, making its study on a complex plane feasible. In this work, we study the relation between the optical path difference (OPD) and poles location theoretically and experimentally, using the Laplace transform and a pole-zero map. Theory and experiments are in concordance. For our study, only the cosine function was considered, which is filtered from the interference pattern. In experimental work, two unperturbed low-finesse Fabry–Pérot interferometers were used. First, a Fabry–Pérot interferometer that has a cavity length of ~ 1.6 mm was used. Its optical path difference was 2.33 mm and the poles were localized at points ± i 12 . rad/nm. Secondly, a Fabry–Pérot interferometer with a cavity length of ~ 5.2 mm was used, and its optical path difference was 7.59 mm and the poles were localized at points ± i 40.4 rad/nm. Experimental results confirmed the theoretical analysis. Our proposal finds practical application for interferometer analysis, signal processing of optical fiber sensors, communication system analysis, and multiplexing systems based on interferometers
Signal Analysis, Signal Demodulation and Numerical Simulation of a Quasi-Distributed Optical Fiber Sensor Based on FDM/WDM Techniques and Fabry-PĂ©rot Interferometers
In civil engineering quasi-distributed optical fiber sensors are used for reinforced concrete monitoring, precast concrete monitoring, temperature monitoring, strain monitoring and temperature/strain monitoring. These quasi-distributed sensors necessarily apply some multiplexing technique. However, on many occasions, two or more multiplexing techniques are combined to increase the number of local sensors and then the cost of each sensing point is reduced. In this work, a signal analysis and a new signal demodulation algorithm are reported for a quasi-distributed optic fiber sensor system based on Frequency Division Multiplexing/Wavelength Division Multiplexing (FDM/WDM) and low-precision Fabry-Pérot interferometers. The mathematical analysis and the new algorithm optimize its design, its implementation, improve its functionality and reduce the cost per sensing point. The analysis was corroborated by simulating a quasi-distributed sensor in operation. Theoretical analysis and numerical simulation are in concordance. The optimization considers multiplexing techniques, signal demodulation, physical parameters, system noise, instrumentation, and detection technique. Based on our analysis and previous results reported, the optical sensing system can have more than 4000 local sensors and it has practical applications in civil engineering
Synthesis of ZnAl2O4 and Evaluation of the Response in Propane Atmospheres of Pellets and Thick Films Manufactured with Powders of the Oxide
ZnAl2O4 nanoparticles were synthesized employing a colloidal method. The oxide powders were obtained at 300 °C, and their crystalline phase was corroborated by X-ray diffraction. The composition and chemical structure of the ZnAl2O4 was carried out by X-ray and photoelectron spectroscopy (XPS). The optical properties were studied by UV-vis spectroscopy, confirming that the ZnAl2O4 nanoparticles had a direct transition with bandgap energy of 3.2 eV. The oxideâs microstructures were microbars of ~18.2 nm in size (on average), as analyzed by scanning (SEM) and transmission (TEM) electron microscopies. Dynamic and stationary gas detection tests were performed in controlled propane atmospheres, obtaining variations concerning the concentration of the test gas and the operating temperature. The optimum temperatures for detecting propane concentrations were 200 and 300 °C. In the static test results, the ZnAl2O4 showed increases in propane response since changes in the materialâs electrical conductance were recorded (conductance = 1/electrical resistance, Ω). The increases were ~2.8 at 200 °C and ~7.8 at 300 °C. The yield shown by the ZnAl2O4 nanoparticles for detecting propane concentrations was optimal compared to other similar oxides categorized as potential gas sensors
Preparation of Powders Containing Sb, Ni, and O for the Design of a Novel CO and C3H8 Sensor
In this work, powders of NiSb2O6 were synthesized using a simple and economical microwave-assisted wet chemistry method, and calcined at 700, 800, and 900 °C. It was identified through X-ray diffraction that the oxide is a nanomaterial with a trirutile-type structure and space group P42/mnm (136). UVâVis spectroscopy measurements showed that the bandgap values were at ~3.10, ~3.14, and ~3.23 eV at 700, 800, and 900 °C, respectively. Using scanning electron microscopy (SEM), irregularly shaped polyhedral microstructures with a size of ~154.78 nm were observed on the entire materialâs surface. The particle size was estimated to average ~92.30 nm at the calcination temperature of 900 °C. Sensing tests in static atmospheres containing 300 ppm of CO at 300 °C showed a maximum sensitivity of ~72.67. On the other hand, in dynamic atmospheres at different CO flows and at an operating temperature of 200 °C, changes with time in electrical resistance were recorded, showing a high response, stability, and repeatability, and good sensor efficiency during several operation cycles. The response times were ~2.77 and ~2.10 min to 150 and 200 cm3/min of CO, respectively. Dynamic tests in propane (C3H8) atmospheres revealed that the material improved its response in alternating current signals at two different frequencies (0.1 and 1 kHz). It was also observed that at 360 °C, the ability to detect propane flows increased considerably. As in the case of CO, NiSb2O6âs response in propane atmospheres showed very good thermal stability, efficiency, a high capacity to detect C3H8, and short response and recovery times at both frequencies. Considering the great performance in propane flows, a sensor prototype was developed that modulates the electrical signals at 360 °C, verifying the excellent functionality of NiSb2O6
Facile Synthesis, Microstructure, and Gas Sensing Properties of NdCoO3 Nanoparticles
NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water as solvent. The solvent was evaporated later by means of noncontinuous microwave radiation at 290âW. The obtained precursor powders were calcined at 200, 500, 600, and 700°C in a standard atmosphere. The oxide crystallized in an orthorhombic crystal system with space group Pnma (62) and cell parameters a=5.33âĂ
, b=7.52âĂ
, and c=5.34âĂ
. The nanoparticles showed a diffusional growth to form a network-like structure and porous adsorption configuration. Pellets prepared from NdCoO3 were tested as gas sensors in atmospheres of carbon monoxide and propane at different temperatures. The oxide nanoparticles were clearly sensitive to changes in gas concentrations (0â300âppm). The sensitivity increased with increasing concentration of the gases and operating temperatures (25, 100, 200, and 300°C)