115 research outputs found

    A Pathogenic Role for Splenic B1 Cells in SIV Disease Progression in Rhesus Macaques

    Get PDF
    B1 cells spontaneously produce protective natural antibodies which provide the first line of defense against a variety of pathogens. Although these natural antibodies share similar autoreactive features with several HIV-1 broadly neutralizing antibodies, the role of B1 cells in HIV/SIV disease progression is unknown. We report the presence of human-like B1 cells in rhesus macaques. During chronic SIV infection, we found that the frequency of splenic CD11b+ B1 cells positively correlated with plasma SIV viral load and exhausted T cells. Mechanistically, we discovered that splenic CD11b+ B1 cells express PD-L2 and IL-10, and were able to induce PD-1 upregulation on CD4+ T cells in vitro. These findings suggest that splenic CD11b+ B1 cells may contribute to the regulation of SIV plasma viral load by enhancing T cell exhaustion. Therefore, understanding the mechanisms that govern their function in rhesus macaques may lead to novel therapeutic strategies for impeding HIV/SIV disease progression

    Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients is Associated with Microbial Translocation and Bacteremia

    Get PDF
    Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19

    The “Comparative Growth Assay”: Examining the Interplay of Anti-cancer Agents with Cells Carrying Single Gene Alterations

    Get PDF
    We have developed a “comparative growth assay” that complements current assays of drug effects based on cytotoxicity. A co-culture of two cell lines, one of which is fluorescently labeled, is exposed to a cytotoxic agent and the proportion of fluorescent cells is compared with that of a baseline unexposed co-culture. For demonstration purposes, two HCT116 cell lines (an hMLH1 homozygous and an hMLH1 heterozygous mutant), altered by insertion of vector alone or the same vector carrying an insert for the expression of enhanced green fluorescent protein (EGFP), were exposed to numerous “anti-cancer” agents. The assay was further validated in a system of two cell lines differing only in the expression of the breast cancer resistance protein (BRCP). The assay allowed the estimation of the duration of action of a particular agent. Assessment of the agent's differential activity over a given time in culture could be expressed as a selection rate, which we chose to describe on an “average selection per day” basis. We conclude that this assay: 1) provides insight into the differential dynamic effects of chemotherapeutic agents or radiation; and 2) allows, through the use of matched cell lines, the investigation of critical physiologic features that govern cell sensitivity

    Vaccine-Induced CD8 +

    No full text
    corecore