456 research outputs found

    Partial purification and MALDI-TOF MS analysis of UN1, a tumor antigen membrane glycoprotein.

    Get PDF
    UN1 is a membrane glycoprotein that is expressed in immature human thymocytes, a subpopulation of peripheral T lymphocytes, the HPB acute lymphoblastic leukemia (ALL) T-cell line and fetal thymus. We previously reported the isolation of a monoclonal antibody (UN1 mAb) recognizing the UN1 protein that was classified as "unclustered" at the 5th and 6th International Workshop and Conference on Human Leukocyte Differentiation Antigens. UN1 was highly expressed in breast cancer tissues and was undetected in non-proliferative lesions and in normal breast tissues, indicating a role for UN1 in the development of a tumorigenic phenotype of breast cancer cells. In this study, we report a partial purification of the UN1 protein from HPB-ALL T cells by anion-exchange chromatography followed by immunoprecipitation with the UN1 mAb and MALDI-TOF MS analysis. This analysis should assist in identifying the amino acid sequence of UN

    Policies and reporting guidelines for small biopsy specimens of mediastinal masses

    Get PDF
    目前,胸腺恶性肿瘤治疗方案大多是根据术\ud 后病理确定,然而,多数临床治疗决策需要在术前\ud 通过活检小标本的病理报告来制定。所以,术前活\ud 检小标本的正确获取和病理解读对治疗决策的制定\ud 显得非常重要[1]。这些标本包括细针活检标本,带\ud 芯穿刺活检标本和手术切取活检标本[2-7]。由于胸\ud 腺肿瘤的病理诊断对组织的获取方法和获取量都有较高\ud 的要求,加之对病理的描述也没有统一的标准,使得小\ud 标本在诊断胸腺瘤方面存在诸多问题。为此,ITMIG在\ud 病理科医生和外科医生回顾相关文献和提出初步建议的\ud 基础上,经集体讨论制定了活检规范操作流程,提出了\ud 对纵隔肿物小活检标本处理和病理报告的建议。旨在为\ud 术前患者的治疗提供一个统一和具有循证医学证据的方\ud 法;同时,将有利于全球数据之间的比较和开展合作研\ud 究,充分利用医疗资源

    Activation of NF-kappaB/Rel transcription factors in human primary peripheral blood mononuclear cells by interleukin 7.

    Full text link
    Pathways that regulate the activation of NF-kappaB/Rel transcription factors are known to include signaling through a number of cytokine receptors. Interleukin 7 (IL-7), produced by bone marrow and other stromal cells, is a key factor for differentiation and survival in the lymphoid and other compartments. We found that human recombinant IL-7 induced NF-kappaB/Rel activation, analyzed by electrophoretic mobility shift assay (EMSA), in human peripheral blood T lymphocytes from healthy donors. Induced complexes included p65 and p50 NF-kappaB/Rel subunits. These results demonstrate for the first time that IL-7 can participate in signaling leading to NF-kappaB/Rel activation

    Deep venous thrombosis and abortion: an unusual clinical manifestation of severe form of pectus excavatum

    Get PDF
    Pectus excavatum is a chest wall malformation with a strong psychological and aesthetic impact. Rarely, pectus excavatum patients can show respiratory or cardiac symptoms occurring mainly during physical exertion. We report a case of a 34-year-old pregnant woman with a severe degree of pectus excavatum who developed serious cardiovascular disease resulting in spontaneous twin abortion at the twenty-first week of gestation. Cardiovascular disease was resolved after open surgical correction of pectus excavatum. This case shows how a tardive diagnosis and a delayed surgical approach for pectus excavatum can lead to severe consequences

    Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape

    Get PDF
    Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alter-ations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma‐associated fibroblasts (MAFs) that are highly abun-dant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal mi-croenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we dis-cuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progres-sion, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes

    Enhancement of cytosine arabinoside-induced apoptosis in human myeloblastic leukemia cells by NFkB/Rel- specific decoy oligodeoxynucleotides

    Get PDF
    The activity of NF-kB/Rel nuclear factors is known to inhibit apoptosis in various cell types. We investigated whether the subtraction of NF-kB/Rel activity influenced the response of 11 AML (M1, M2 and M4) patients’ cells to AraC. To this end we used a phosphorothioate double-stranded decoy oligodeoxynucleotide (ODN) carrying the NF-kB/Rel- consensus sequence. Cell incubation with this ODN, but not its mutated (scrambled) form used as a control, resulted in abating the NF-kB/Rel nuclear levels in these cells, as verified by electrophoretic mobility shift assay (EMSA) of cells’ nuclear extracts. We incubated the leukemic cells with AraC (32 or 1 mM), in either the absence or presence of the decoy or the scrambled ODN, and analyzed cell apoptosis. The spontaneous cell apoptosis detectable in the absence of AraC (,25%) was not modulated by the oligonucleotide presence in cell cultures. On the other hand, in 10 of the 11 samples tested, the decoy kB, but not the scrambled ODN significantly (P ,0.01 in a Student’s t test) enhanced cell apoptotic response to AraC. Such an effect was particularly remarkable at low AraC doses (1 mM). These findings indicate that NF-kB/Rel activity influences response to AraC in human primary myeloblastic cells, and suggests that the inhibition of NF-kB/Rel factors can improve the effect of chemotherapy in AM

    p53-Mediated downregulation of H ferritin promoter transcriptional efficiency via NF-Y

    Get PDF
    The tumor suppressor protein p53 triggers many of the cellular responses to DNA damage by regulating the transcription of a series of downstream target genes. p53 acts on the promoter of the target genes by interacting with the trimeric transcription factor NF-Y. H ferritin promoter activity is tightly dependent on a multiprotein complex called Bbf; on this complex NF-Y plays a major role. The aim of this work was to study the modulation of H ferritin expression levels by p53. CAT reporter assays indicate that: (i) p53 overexpression strongly downregulates the transcriptional efficiency driven by an H ferritin promoter construct containing only the NF-Y recognition sequence and that the phenomenon is reverted by p53 siRNA; (ii) the p53 C-terminal region is sufficient to elicitate this regulation and that a correct C-terminal acetylation is also required. The H ferritin promoter displays no p53-binding sites; chromatin immunoprecipitation assays indicate that p53 is recruited on this promoter by NF-Y. The p53–NF-Y interaction does not alter the NF-Y DNA-binding ability as indicated by electrophoretic mobility shift assay (EMSA) analysis. These results demonstrate that the gene coding for the H ferritin protein belongs to the family of p53-regulated genes, therefore adding a new level of complexity to the regulation of the H ferritin transcription and delineate a role for this protein in a series of cellular events triggered by p53 activation
    corecore