109 research outputs found

    Constraining the nuclear gluon distribution in eAeA processes at RHIC

    Get PDF
    A systematic determination of the gluon distribution is of fundamental interest in understanding the parton structure of nuclei and the QCD dynamics. Currently, the behavior of this distribution at small xx (high energy) is completely undefined. In this paper we analyze the possibility of constraining the nuclear effects present in xgAxg^A using the inclusive observables which would be measured in the future electron-nucleus collider at RHIC. We demonstrate that the study of nuclear longitudinal and charm structure functions allows to estimate the magnitude of shadowing and antishadowing effects in the nuclear gluon distribution.Comment: 6 pages, 3 eps figure

    Probing the Color Glass Condensate in an electron-ion collider

    Full text link
    Perturbative Quantum Chromodynamics (pQCD) predicts that the small-xx gluons in a hadron wavefunction should form a Color Glass Condensate (CGC), characterized by a saturation scale Qs(x,A)Q_s (x, A) which is energy and atomic number dependent. In this paper we study the predictions of CGC physics for electron - ion collisions at high energies. We consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities and estimate the nuclear structure function F2A(x,Q2)F_2^A(x,Q^2), as well as the longitudinal and charm contributions, using a generalization for nuclear targets of the Iancu-Itakura-Munier model which describes the epep HERA data quite well. Moreover, we investigate the behavior of the logarithmic slopes of the total and longitudinal structure functions in the kinematical region of the future electron - ion collider eRHIC.Comment: 18 pages, 9 figures. Version to be published in the European Physical Journal

    Could saturation effects be visible in a future electron-ion collider?

    Get PDF
    We expect to observe parton saturation in a future electron - ion collider. In this letter we discuss this expectation in more detail considering two different models which are in good agreement with the existing experimental data on nuclear structure functions. In particular, we study the predictions of saturation effects in electron - ion collisions at high energies, using a generalization for nuclear targets of the b-CGC model, which describes the epep HERA quite well. We estimate the total, longitudinal and charm structure functions in the dipole picture and compare them with the predictions obtained using collinear factorization and modern sets of nuclear parton distributions. Our results show that inclusive observables are not very useful in the search for saturation effects. In the small xx region they are very difficult to disentangle from the predictions of the collinear approaches . This happens mainly because of the large uncertainties in the latter. On the other hand, our results indicate that the contribution of diffractive processes to the total cross section is about 20 % at large A and small Q^2, allowing for a detailed study of diffractive observables. The study of diffractive processes becomes essential to observe parton saturation.Comment: 7 pages 5 figure

    Large mass Q-Qbar production from the Color Glass Condensate

    Full text link
    We compute quark-antiquark pair production in the context of the Color Glass Condensate model for central heavy-ion collisions. The calculation is performed analytically to leading order in the density of hard sources present in the projectiles, and is applicable to quarks with a mass large compared to the saturation momentum. The formulas derived in this paper are compared to expressions derived in the framework of collinearly factorized perturbative QCD and in kt factorization models. We comment on the breaking of kt factorization which occurs beyond leading order in our approach.Comment: 24 pages, 3 postscript figure

    Gluons and the quark sea at high energies: distributions, polarization, tomography

    Get PDF
    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.Comment: 547 pages, A report on the joint BNL/INT/Jlab program on the science case for an Electron-Ion Collider, September 13 to November 19, 2010, Institute for Nuclear Theory, Seattle; v2 with minor changes, matches printed versio

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore